Skip to content

Commit b80adbc

Browse files
authored
* dbrx * format * format * comments * change scores slightly * remove inadvertant import
1 parent 297a908 commit b80adbc

File tree

4 files changed

+259
-3
lines changed

4 files changed

+259
-3
lines changed

llms/mlx_lm/models/dbrx.py

Lines changed: 255 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,255 @@
1+
from dataclasses import dataclass
2+
from typing import Dict, Optional, Tuple, Union
3+
4+
import mlx.core as mx
5+
import mlx.nn as nn
6+
import numpy as np
7+
8+
from .base import BaseModelArgs
9+
10+
11+
@dataclass
12+
class ModelArgs(BaseModelArgs):
13+
model_type: str
14+
vocab_size: int
15+
d_model: int
16+
ffn_config: dict
17+
attn_config: dict
18+
n_layers: int
19+
n_heads: int
20+
21+
22+
class Attention(nn.Module):
23+
def __init__(self, args: ModelArgs):
24+
super().__init__()
25+
self.num_heads = args.n_heads
26+
self.d_model = args.d_model
27+
self.head_dim = args.d_model // args.n_heads
28+
self.num_key_value_heads = args.attn_config["kv_n_heads"]
29+
self.clip_qkv = args.attn_config["clip_qkv"]
30+
self.rope_theta = args.attn_config["rope_theta"]
31+
32+
self.scale = self.head_dim**-0.5
33+
34+
self.Wqkv = nn.Linear(
35+
args.d_model,
36+
(self.num_key_value_heads * 2 + self.num_heads) * self.head_dim,
37+
bias=False,
38+
)
39+
self.out_proj = nn.Linear(args.d_model, args.d_model, bias=False)
40+
self.rope = nn.RoPE(
41+
self.head_dim,
42+
traditional=False,
43+
base=self.rope_theta,
44+
)
45+
46+
def __call__(
47+
self,
48+
x: mx.array,
49+
mask: Optional[mx.array] = None,
50+
cache: Optional[Tuple[mx.array, mx.array]] = None,
51+
) -> mx.array:
52+
53+
qkv = self.Wqkv(x)
54+
qkv = mx.clip(qkv, a_min=-self.clip_qkv, a_max=self.clip_qkv)
55+
splits = [self.d_model, self.d_model + self.head_dim * self.num_key_value_heads]
56+
queries, keys, values = mx.split(qkv, splits, axis=-1)
57+
58+
B, L, D = x.shape
59+
60+
# Prepare the queries, keys and values for the attention computation
61+
queries = queries.reshape(B, L, self.num_heads, -1).transpose(0, 2, 1, 3)
62+
keys = keys.reshape(B, L, self.num_key_value_heads, -1).transpose(0, 2, 1, 3)
63+
values = values.reshape(B, L, self.num_key_value_heads, -1).transpose(
64+
0, 2, 1, 3
65+
)
66+
67+
if cache is not None:
68+
key_cache, value_cache = cache
69+
queries = self.rope(queries, offset=key_cache.shape[2])
70+
keys = self.rope(keys, offset=key_cache.shape[2])
71+
keys = mx.concatenate([key_cache, keys], axis=2)
72+
values = mx.concatenate([value_cache, values], axis=2)
73+
else:
74+
queries = self.rope(queries)
75+
keys = self.rope(keys)
76+
77+
output = mx.fast.scaled_dot_product_attention(
78+
queries, keys, values, scale=self.scale, mask=mask
79+
)
80+
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
81+
return self.out_proj(output), (keys, values)
82+
83+
84+
class NormAttnNorm(nn.Module):
85+
def __init__(self, args: ModelArgs):
86+
super().__init__()
87+
self.norm_1 = nn.LayerNorm(args.d_model, bias=False)
88+
self.norm_2 = nn.LayerNorm(args.d_model, bias=False)
89+
self.attn = Attention(args)
90+
91+
def __call__(
92+
self,
93+
x: mx.array,
94+
mask: Optional[mx.array] = None,
95+
cache: Optional[Tuple[mx.array, mx.array]] = None,
96+
) -> mx.array:
97+
h, cache = self.attn(self.norm_1(x), mask=mask, cache=cache)
98+
x = h + x
99+
return x, self.norm_2(x), cache
100+
101+
102+
class MLP(nn.Module):
103+
def __init__(self, d_model: int, ffn_dim: int):
104+
super().__init__()
105+
self.v1 = nn.Linear(d_model, ffn_dim, bias=False)
106+
self.w1 = nn.Linear(d_model, ffn_dim, bias=False)
107+
self.w2 = nn.Linear(ffn_dim, d_model, bias=False)
108+
self.act_fn = nn.silu
109+
110+
def __call__(self, x: mx.array) -> mx.array:
111+
current_hidden_states = self.act_fn(self.w1(x)) * self.v1(x)
112+
current_hidden_states = self.w2(current_hidden_states)
113+
return current_hidden_states
114+
115+
116+
class Router(nn.Module):
117+
def __init__(self, d_model: int, num_experts: int):
118+
super().__init__()
119+
self.layer = nn.Linear(d_model, num_experts, bias=False)
120+
121+
def __call__(self, x: mx.array):
122+
return self.layer(x)
123+
124+
125+
class SparseMoeBlock(nn.Module):
126+
def __init__(self, args: ModelArgs):
127+
super().__init__()
128+
self.d_model = args.d_model
129+
self.ffn_dim = args.ffn_config["ffn_hidden_size"]
130+
self.num_experts = args.ffn_config["moe_num_experts"]
131+
self.num_experts_per_tok = args.ffn_config["moe_top_k"]
132+
133+
self.router = Router(self.d_model, self.num_experts)
134+
self.experts = [
135+
MLP(self.d_model, self.ffn_dim) for _ in range(self.num_experts)
136+
]
137+
138+
def __call__(self, x: mx.array) -> mx.array:
139+
ne = self.num_experts_per_tok
140+
orig_shape = x.shape
141+
x = x.reshape(-1, x.shape[-1])
142+
143+
gates = self.router(x)
144+
gates = mx.softmax(gates.astype(mx.float32), axis=-1)
145+
146+
inds = mx.stop_gradient(mx.argpartition(-gates, kth=ne, axis=-1)[:, :ne])
147+
scores = mx.take_along_axis(gates, inds, axis=-1)
148+
scores = scores / mx.linalg.norm(scores, ord=1, axis=-1, keepdims=True)
149+
scores = scores.astype(x.dtype)
150+
151+
if self.training:
152+
inds = np.array(inds)
153+
y = mx.zeros((x.shape[0], ne, x.shape[-1]), x.dtype)
154+
for e, expert in enumerate(self.experts):
155+
idx1, idx2 = map(mx.array, np.where(inds == e))
156+
if idx1.size == 0:
157+
continue
158+
y[idx1, idx2] = expert(x[idx1])
159+
160+
y = (y * scores[:, :, None]).sum(axis=1)
161+
else:
162+
y = []
163+
for xt, st, it in zip(x, scores, inds.tolist()):
164+
yt = mx.stack([self.experts[e](xt) for e in it], axis=-1)
165+
yt = (yt * st).sum(axis=-1)
166+
y.append(yt)
167+
y = mx.stack(y, axis=0)
168+
169+
return y.reshape(orig_shape)
170+
171+
172+
class DecoderLayer(nn.Module):
173+
def __init__(self, args: ModelArgs):
174+
super().__init__()
175+
self.ffn = SparseMoeBlock(args)
176+
self.norm_attn_norm = NormAttnNorm(args)
177+
178+
def __call__(
179+
self,
180+
x: mx.array,
181+
mask: Optional[mx.array] = None,
182+
cache: Optional[Tuple[mx.array, mx.array]] = None,
183+
) -> mx.array:
184+
r, h, cache = self.norm_attn_norm(x, mask, cache)
185+
out = self.ffn(h) + r
186+
return out, cache
187+
188+
189+
class DBRX(nn.Module):
190+
def __init__(self, args: ModelArgs):
191+
super().__init__()
192+
self.vocab_size = args.vocab_size
193+
self.wte = nn.Embedding(args.vocab_size, args.d_model)
194+
self.blocks = [DecoderLayer(args=args) for _ in range(args.n_layers)]
195+
self.norm_f = nn.LayerNorm(args.d_model, bias=False)
196+
197+
def __call__(
198+
self,
199+
inputs: mx.array,
200+
cache=None,
201+
):
202+
h = self.wte(inputs)
203+
204+
mask = None
205+
T = h.shape[1]
206+
if T > 1:
207+
mask = nn.MultiHeadAttention.create_additive_causal_mask(T)
208+
mask = mask.astype(h.dtype)
209+
210+
if cache is None:
211+
cache = [None] * len(self.blocks)
212+
213+
for e, layer in enumerate(self.blocks):
214+
h, cache[e] = layer(h, mask, cache[e])
215+
216+
return self.norm_f(h), cache
217+
218+
219+
class Model(nn.Module):
220+
def __init__(self, args: ModelArgs):
221+
super().__init__()
222+
self.model_type = args.model_type
223+
self.transformer = DBRX(args)
224+
self.lm_head = nn.Linear(args.d_model, args.vocab_size, bias=False)
225+
self.args = args
226+
227+
def __call__(
228+
self,
229+
inputs: mx.array,
230+
cache=None,
231+
):
232+
out, cache = self.transformer(inputs, cache)
233+
return self.lm_head(out), cache
234+
235+
@property
236+
def layers(self):
237+
return self.transformer.blocks
238+
239+
def sanitize(self, weights):
240+
# Split experts into sub matrices
241+
num_experts = self.args.ffn_config["moe_num_experts"]
242+
dim = self.args.ffn_config["ffn_hidden_size"]
243+
244+
pattern = "experts.mlp"
245+
new_weights = {k: v for k, v in weights.items() if pattern not in k}
246+
for k, v in weights.items():
247+
if pattern in k:
248+
experts = [
249+
(k.replace(".mlp", f".{e}") + ".weight", sv)
250+
for e, sv in enumerate(mx.split(v, num_experts, axis=0))
251+
]
252+
if k.endswith("w2"):
253+
experts = [(s, sv.T) for s, sv in experts]
254+
new_weights.update(experts)
255+
return new_weights

llms/mlx_lm/models/mixtral.py

Lines changed: 1 addition & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -143,7 +143,6 @@ def __call__(self, x: mx.array) -> mx.array:
143143
).astype(gates.dtype)
144144

145145
if self.training:
146-
mx.eval(inds)
147146
inds = np.array(inds)
148147
y = mx.zeros((x.shape[0], ne, x.shape[-1]), x.dtype)
149148
for e, expert in enumerate(self.experts):
@@ -156,7 +155,7 @@ def __call__(self, x: mx.array) -> mx.array:
156155
else:
157156
y = []
158157
for xt, st, it in zip(x, scores, inds.tolist()):
159-
yt = mx.concatenate([self.experts[e](xt)[:, None] for e in it], axis=-1)
158+
yt = mx.stack([self.experts[e](xt) for e in it], axis=-1)
160159
yt = (yt * st).sum(axis=-1)
161160
y.append(yt[None, :])
162161
y = mx.concatenate(y)

llms/mlx_lm/models/phixtral.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -125,7 +125,7 @@ def __call__(self, x: mx.array) -> mx.array:
125125
else:
126126
y = []
127127
for xt, st, it in zip(x, scores, inds.tolist()):
128-
yt = mx.concatenate([self.mlp[e](xt)[:, None] for e in it], axis=-1)
128+
yt = mx.stack([self.mlp[e](xt) for e in it], axis=-1)
129129
yt = (yt * st).sum(axis=-1)
130130
y.append(yt[None, :])
131131
y = mx.concatenate(y)

llms/mlx_lm/tuner/utils.py

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -60,6 +60,8 @@ def linear_to_lora_layers(
6060
keys = set(["att_proj"])
6161
elif model.model_type == "phi-msft":
6262
keys = set(["mixer.Wqkv", "moe.gate"])
63+
elif model.model_type == "dbrx":
64+
keys = set(["norm_attn_norm.attn.Wqkv", "ffn.router.layer"])
6365
else:
6466
raise ValueError(f"Lora does not support {model.model_type}")
6567

0 commit comments

Comments
 (0)