Skip to content

Commit 1491c1c

Browse files
committed
DOC remove backticks from around attribute name + PEP8
1 parent e1891d8 commit 1491c1c

File tree

1 file changed

+17
-20
lines changed

1 file changed

+17
-20
lines changed

sklearn/linear_model/logistic.py

Lines changed: 17 additions & 20 deletions
Original file line numberDiff line numberDiff line change
@@ -352,10 +352,11 @@ def logistic_regression_path(X, y, pos_class=None, Cs=10, fit_intercept=True,
352352
temp[-1] = class_weight[n_classes[0]]
353353
class_weight = temp.copy()
354354
else:
355-
raise ValueError("In LogisticRegressionCV the liblinear solver "
356-
"cannot handle multiclass with class_weight "
357-
"of type dict. Use the lbfgs, newton-cg "
358-
"solvers or set class_weight='auto'")
355+
raise ValueError("In LogisticRegressionCV the liblinear "
356+
"solver cannot handle multiclass with "
357+
"class_weight of type dict. Use the lbfgs, "
358+
"newton-cg solvers or set "
359+
"class_weight='auto'")
359360
else:
360361
class_weight_ = compute_class_weight(class_weight, n_classes, y)
361362
sample_weight = class_weight_[le.fit_transform(y)]
@@ -639,7 +640,7 @@ class LogisticRegression(BaseLibLinear, LinearClassifierMixin,
639640
Intercept (a.k.a. bias) added to the decision function.
640641
If `fit_intercept` is set to False, the intercept is set to zero.
641642
642-
`n_iter_` : int
643+
n_iter_ : int
643644
Maximum of the actual number of iterations across all classes.
644645
Valid only for the liblinear solver.
645646
@@ -942,23 +943,19 @@ def fit(self, X, y):
942943
raise ValueError("class_weight provided should be a "
943944
"dict or 'auto'")
944945

946+
path_func = delayed(_log_reg_scoring_path)
945947
fold_coefs_ = Parallel(n_jobs=self.n_jobs, verbose=self.verbose)(
946-
delayed(_log_reg_scoring_path)(X, y, train, test,
947-
pos_class=label,
948-
Cs=self.Cs,
949-
fit_intercept=self.fit_intercept,
950-
penalty=self.penalty,
951-
dual=self.dual,
952-
solver=self.solver,
953-
max_iter=self.max_iter,
954-
tol=self.tol,
955-
class_weight=self.class_weight,
956-
verbose=max(0, self.verbose - 1),
957-
scoring=self.scoring,
958-
intercept_scaling=self.intercept_scaling)
948+
path_func(X, y, train, test, pos_class=label, Cs=self.Cs,
949+
fit_intercept=self.fit_intercept, penalty=self.penalty,
950+
dual=self.dual, solver=self.solver,
951+
max_iter=self.max_iter, tol=self.tol,
952+
class_weight=self.class_weight,
953+
verbose=max(0, self.verbose - 1),
954+
scoring=self.scoring,
955+
intercept_scaling=self.intercept_scaling)
959956
for label in labels
960-
for train, test in folds
961-
)
957+
for train, test in folds)
958+
962959
coefs_paths, Cs, scores = zip(*fold_coefs_)
963960

964961
self.Cs_ = Cs[0]

0 commit comments

Comments
 (0)