@@ -71,7 +71,8 @@ def fit(self, X, y, sample_weight=None):
7171 Parameters
7272 ----------
7373 X : {array-like, sparse matrix} of shape = [n_samples, n_features]
74- The training input samples.
74+ The training input samples. Sparse matrix can be csc, csr, coo,
75+ dok, or lil. coo, dok, and lil are converted to csr.
7576
7677 y : array-like of shape = [n_samples]
7778 The target values (class labels in classification, real numbers in
@@ -95,7 +96,9 @@ def fit(self, X, y, sample_weight=None):
9596 X = X .tocsr ()
9697 X = safe_asarray (X )
9798
99+ X , = check_arrays (X , dtype = DTYPE )
98100 X , y = check_arrays (X , y , check_ccontiguous = True )
101+
99102 y = column_or_1d (y , warn = True )
100103
101104 if sample_weight is None :
@@ -166,7 +169,8 @@ def _boost(self, iboost, X, y, sample_weight):
166169 The index of the current boost iteration.
167170
168171 X : {array-like, sparse matrix} of shape = [n_samples, n_features]
169- The training input samples.
172+ The training input samples. Sparse matrix can be csc, csr, coo,
173+ dok, or lil. coo, dok, and lil are converted to csr.
170174
171175 y : array-like of shape = [n_samples]
172176 The target values (class labels).
@@ -199,8 +203,9 @@ def staged_score(self, X, y, sample_weight=None):
199203
200204 Parameters
201205 ----------
202- X : {array-like, sparse matrix}, shape = [n_samples, n_features]
203- Training set.
206+ X : {array-like, sparse matrix} of shape = [n_samples, n_features]
207+ The training input samples. Sparse matrix can be csc, csr, coo,
208+ dok, or lil. coo, dok, and lil are converted to csr.
204209
205210 y : array-like, shape = [n_samples]
206211 Labels for X.
@@ -358,7 +363,8 @@ def fit(self, X, y, sample_weight=None):
358363 Parameters
359364 ----------
360365 X : {array-like, sparse matrix} of shape = [n_samples, n_features]
361- The training input samples.
366+ The training input samples. Sparse matrix can be csc, csr, coo,
367+ dok, or lil. coo, dok, and lil are converted to csr.
362368
363369 y : array-like of shape = [n_samples]
364370 The target values (class labels).
@@ -408,7 +414,8 @@ def _boost(self, iboost, X, y, sample_weight):
408414 The index of the current boost iteration.
409415
410416 X : {array-like, sparse matrix} of shape = [n_samples, n_features]
411- The training input samples.
417+ The training input samples. Sparse matrix can be csc, csr, coo,
418+ dok, or lil. coo, dok, and lil are converted to csr.
412419
413420 y : array-like of shape = [n_samples]
414421 The target values (class labels).
@@ -556,7 +563,8 @@ def predict(self, X):
556563 Parameters
557564 ----------
558565 X : {array-like, sparse matrix} of shape = [n_samples, n_features]
559- The input samples.
566+ The training input samples. Sparse matrix can be csc, csr, coo,
567+ dok, or lil. coo, dok, and lil are converted to csr.
560568
561569 Returns
562570 -------
@@ -608,7 +616,8 @@ def decision_function(self, X):
608616 Parameters
609617 ----------
610618 X : {array-like, sparse matrix} of shape = [n_samples, n_features]
611- The input samples.
619+ The training input samples. Sparse matrix can be csc, csr, coo,
620+ dok, or lil. coo, dok, and lil are converted to csr.
612621
613622 Returns
614623 -------
@@ -651,7 +660,8 @@ def staged_decision_function(self, X):
651660 Parameters
652661 ----------
653662 X : {array-like, sparse matrix} of shape = [n_samples, n_features]
654- The input samples.
663+ The training input samples. Sparse matrix can be csc, csr, coo,
664+ dok, or lil. coo, dok, and lil are converted to csr.
655665
656666 Returns
657667 -------
@@ -704,7 +714,8 @@ def predict_proba(self, X):
704714 Parameters
705715 ----------
706716 X : {array-like, sparse matrix} of shape = [n_samples, n_features]
707- The input samples.
717+ The training input samples. Sparse matrix can be csc, csr, coo,
718+ dok, or lil. coo, dok, and lil are converted to csr.
708719
709720 Returns
710721 -------
@@ -747,7 +758,8 @@ def staged_predict_proba(self, X):
747758 Parameters
748759 ----------
749760 X : {array-like, sparse matrix} of shape = [n_samples, n_features]
750- The input samples.
761+ The training input samples. Sparse matrix can be csc, csr, coo,
762+ dok, or lil. coo, dok, and lil are converted to csr.
751763
752764 Returns
753765 -------
@@ -791,7 +803,8 @@ def predict_log_proba(self, X):
791803 Parameters
792804 ----------
793805 X : {array-like, sparse matrix} of shape = [n_samples, n_features]
794- The input samples.
806+ The training input samples. Sparse matrix can be csc, csr, coo,
807+ dok, or lil. coo, dok, and lil are converted to csr.
795808
796809 Returns
797810 -------
@@ -886,7 +899,8 @@ def fit(self, X, y, sample_weight=None):
886899 Parameters
887900 ----------
888901 X : {array-like, sparse matrix} of shape = [n_samples, n_features]
889- The training input samples.
902+ The training input samples. Sparse matrix can be csc, csr, coo,
903+ dok, or lil. coo, dok, and lil are converted to csr.
890904
891905 y : array-like of shape = [n_samples]
892906 The target values (real numbers).
@@ -925,7 +939,8 @@ def _boost(self, iboost, X, y, sample_weight):
925939 The index of the current boost iteration.
926940
927941 X : {array-like, sparse matrix} of shape = [n_samples, n_features]
928- The training input samples.
942+ The training input samples. Sparse matrix can be csc, csr, coo,
943+ dok, or lil. coo, dok, and lil are converted to csr.
929944
930945 y : array-like of shape = [n_samples]
931946 The target values (class labels in classification, real numbers in
@@ -1034,7 +1049,8 @@ def predict(self, X):
10341049 Parameters
10351050 ----------
10361051 X : {array-like, sparse matrix} of shape = [n_samples, n_features]
1037- The input samples.
1052+ The training input samples. Sparse matrix can be csc, csr, coo,
1053+ dok, or lil. coo, dok, and lil are converted to csr.
10381054
10391055 Returns
10401056 -------
@@ -1059,7 +1075,8 @@ def staged_predict(self, X):
10591075 Parameters
10601076 ----------
10611077 X : {array-like, sparse matrix} of shape = [n_samples, n_features]
1062- The input samples.
1078+ The training input samples. Sparse matrix can be csc, csr, coo,
1079+ dok, or lil. coo, dok, and lil are converted to csr.
10631080
10641081 Returns
10651082 -------
0 commit comments