7777
7878#----------------------------------------------------------------------
7979# Plot all available kernels
80- Xplot = np .linspace (- 6 , 6 , 1000 )[:, None ]
81- Xsrc = np .zeros ((1 , 1 ))
80+ X_plot = np .linspace (- 6 , 6 , 1000 )[:, None ]
81+ X_src = np .zeros ((1 , 1 ))
8282
8383fig , ax = plt .subplots (2 , 3 , sharex = True , sharey = True )
8484fig .subplots_adjust (left = 0.05 , right = 0.95 , hspace = 0.05 , wspace = 0.05 )
@@ -97,8 +97,8 @@ def format_func(x, loc):
9797for i , kernel in enumerate (['gaussian' , 'tophat' , 'epanechnikov' ,
9898 'exponential' , 'linear' , 'cosine' ]):
9999 axi = ax .ravel ()[i ]
100- log_dens = KernelDensity (kernel = kernel ).fit (Xsrc ).eval (Xplot )
101- axi .fill (Xplot [:, 0 ], np .exp (log_dens ), '-k' , fc = '#AAAAFF' )
100+ log_dens = KernelDensity (kernel = kernel ).fit (X_src ).eval (X_plot )
101+ axi .fill (X_plot [:, 0 ], np .exp (log_dens ), '-k' , fc = '#AAAAFF' )
102102 axi .text (- 2.6 , 0.95 , kernel )
103103
104104 axi .xaxis .set_major_formatter (plt .FuncFormatter (format_func ))
@@ -117,18 +117,18 @@ def format_func(x, loc):
117117X = np .concatenate ((np .random .normal (0 , 1 , 0.3 * N ),
118118 np .random .normal (5 , 1 , 0.7 * N )))[:, np .newaxis ]
119119
120- Xplot = np .linspace (- 5 , 10 , 1000 )[:, np .newaxis ]
120+ X_plot = np .linspace (- 5 , 10 , 1000 )[:, np .newaxis ]
121121
122- true_dens = (0.3 * norm (0 , 1 ).pdf (Xplot [:, 0 ])
123- + 0.7 * norm (5 , 1 ).pdf (Xplot [:, 0 ]))
122+ true_dens = (0.3 * norm (0 , 1 ).pdf (X_plot [:, 0 ])
123+ + 0.7 * norm (5 , 1 ).pdf (X_plot [:, 0 ]))
124124
125125fig , ax = plt .subplots ()
126- ax .fill (Xplot [:, 0 ], true_dens , fc = 'black' , alpha = 0.2 ,
126+ ax .fill (X_plot [:, 0 ], true_dens , fc = 'black' , alpha = 0.2 ,
127127 label = 'input distribution' )
128128
129129for kernel in ['gaussian' , 'tophat' , 'epanechnikov' ]:
130- log_dens = KernelDensity (kernel = kernel , bandwidth = 0.5 ).fit (X ).eval (Xplot )
131- ax .plot (Xplot [:, 0 ], np .exp (log_dens ), '-' ,
130+ log_dens = KernelDensity (kernel = kernel , bandwidth = 0.5 ).fit (X ).eval (X_plot )
131+ ax .plot (X_plot [:, 0 ], np .exp (log_dens ), '-' ,
132132 label = "kernel = '{0}'" .format (kernel ))
133133
134134ax .text (6 , 0.38 , "N={0} points" .format (N ))
0 commit comments