Skip to content

Commit a42e4f1

Browse files
committed
DOC: tweak kde examples and move density docs
1 parent 958de49 commit a42e4f1

File tree

2 files changed

+11
-11
lines changed

2 files changed

+11
-11
lines changed

doc/unsupervised_learning.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -8,12 +8,12 @@ Unsupervised learning
88
.. toctree::
99

1010
modules/mixture
11-
modules/density
1211
modules/manifold
1312
modules/clustering
1413
modules/decomposition
1514
modules/covariance
1615
modules/outlier_detection
1716
modules/hmm
17+
modules/density
1818

1919

examples/neighbors/plot_kde_1d.py

Lines changed: 10 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -77,8 +77,8 @@
7777

7878
#----------------------------------------------------------------------
7979
# Plot all available kernels
80-
Xplot = np.linspace(-6, 6, 1000)[:, None]
81-
Xsrc = np.zeros((1, 1))
80+
X_plot = np.linspace(-6, 6, 1000)[:, None]
81+
X_src = np.zeros((1, 1))
8282

8383
fig, ax = plt.subplots(2, 3, sharex=True, sharey=True)
8484
fig.subplots_adjust(left=0.05, right=0.95, hspace=0.05, wspace=0.05)
@@ -97,8 +97,8 @@ def format_func(x, loc):
9797
for i, kernel in enumerate(['gaussian', 'tophat', 'epanechnikov',
9898
'exponential', 'linear', 'cosine']):
9999
axi = ax.ravel()[i]
100-
log_dens = KernelDensity(kernel=kernel).fit(Xsrc).eval(Xplot)
101-
axi.fill(Xplot[:, 0], np.exp(log_dens), '-k', fc='#AAAAFF')
100+
log_dens = KernelDensity(kernel=kernel).fit(X_src).eval(X_plot)
101+
axi.fill(X_plot[:, 0], np.exp(log_dens), '-k', fc='#AAAAFF')
102102
axi.text(-2.6, 0.95, kernel)
103103

104104
axi.xaxis.set_major_formatter(plt.FuncFormatter(format_func))
@@ -117,18 +117,18 @@ def format_func(x, loc):
117117
X = np.concatenate((np.random.normal(0, 1, 0.3 * N),
118118
np.random.normal(5, 1, 0.7 * N)))[:, np.newaxis]
119119

120-
Xplot = np.linspace(-5, 10, 1000)[:, np.newaxis]
120+
X_plot = np.linspace(-5, 10, 1000)[:, np.newaxis]
121121

122-
true_dens = (0.3 * norm(0, 1).pdf(Xplot[:, 0])
123-
+ 0.7 * norm(5, 1).pdf(Xplot[:, 0]))
122+
true_dens = (0.3 * norm(0, 1).pdf(X_plot[:, 0])
123+
+ 0.7 * norm(5, 1).pdf(X_plot[:, 0]))
124124

125125
fig, ax = plt.subplots()
126-
ax.fill(Xplot[:, 0], true_dens, fc='black', alpha=0.2,
126+
ax.fill(X_plot[:, 0], true_dens, fc='black', alpha=0.2,
127127
label='input distribution')
128128

129129
for kernel in ['gaussian', 'tophat', 'epanechnikov']:
130-
log_dens = KernelDensity(kernel=kernel, bandwidth=0.5).fit(X).eval(Xplot)
131-
ax.plot(Xplot[:, 0], np.exp(log_dens), '-',
130+
log_dens = KernelDensity(kernel=kernel, bandwidth=0.5).fit(X).eval(X_plot)
131+
ax.plot(X_plot[:, 0], np.exp(log_dens), '-',
132132
label="kernel = '{0}'".format(kernel))
133133

134134
ax.text(6, 0.38, "N={0} points".format(N))

0 commit comments

Comments
 (0)