-
-
Notifications
You must be signed in to change notification settings - Fork 10.5k
Closed
Labels
bugSomething isn't workingSomething isn't working
Description
Your current environment
The output of python collect_env.py
Collecting environment information...
/home/xxx/miniconda3/envs/llm/lib/python3.12/site-packages/torch/cuda/__init__.py:327: UserWarning:
NVIDIA Thor with CUDA capability sm_110 is not compatible with the current PyTorch installation.
The current PyTorch install supports CUDA capabilities sm_80 sm_90 sm_100 sm_120.
If you want to use the NVIDIA Thor GPU with PyTorch, please check the instructions at https://pytorch.org/get-started/locally/
warnings.warn(
==============================
System Info
==============================
OS : Ubuntu 24.04.3 LTS (aarch64)
GCC version : (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
Clang version : Could not collect
CMake version : Could not collect
Libc version : glibc-2.39
==============================
PyTorch Info
==============================
PyTorch version : 2.10.0.dev20251012+cu128
Is debug build : False
CUDA used to build PyTorch : 12.8
ROCM used to build PyTorch : N/A
==============================
Python Environment
==============================
Python version : 3.12.11 | packaged by Anaconda, Inc. | (main, Jun 5 2025, 12:59:05) [GCC 11.2.0] (64-bit runtime)
Python platform : Linux-6.8.12-tegra-aarch64-with-glibc2.39
==============================
CUDA / GPU Info
==============================
Is CUDA available : True
CUDA runtime version : 13.0.48
CUDA_MODULE_LOADING set to :
GPU models and configuration : GPU 0: NVIDIA Thor
Nvidia driver version : 580.00
cuDNN version : Probably one of the following:
/usr/lib/aarch64-linux-gnu/libcudnn.so.9.12.0
/usr/lib/aarch64-linux-gnu/libcudnn_adv.so.9.12.0
/usr/lib/aarch64-linux-gnu/libcudnn_cnn.so.9.12.0
/usr/lib/aarch64-linux-gnu/libcudnn_engines_precompiled.so.9.12.0
/usr/lib/aarch64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.12.0
/usr/lib/aarch64-linux-gnu/libcudnn_graph.so.9.12.0
/usr/lib/aarch64-linux-gnu/libcudnn_heuristic.so.9.12.0
/usr/lib/aarch64-linux-gnu/libcudnn_ops.so.9.12.0
HIP runtime version : N/A
MIOpen runtime version : N/A
Is XNNPACK available : True
==============================
CPU Info
==============================
Architecture: aarch64
CPU op-mode(s): 64-bit
Byte Order: Little Endian
CPU(s): 14
On-line CPU(s) list: 0-13
Vendor ID: ARM
Model name: -
Model: 0
Thread(s) per core: 1
Core(s) per cluster: 14
Socket(s): -
Cluster(s): 1
Stepping: r0p0
CPU(s) scaling MHz: 61%
CPU max MHz: 2601.0000
CPU min MHz: 54.0000
BogoMIPS: 2000.00
Flags: fp asimd evtstrm aes pmull sha1 sha2 crc32 atomics fphp asimdhp cpuid asimdrdm jscvt fcma lrcpc dcpop sha3 sm3 sm4 asimddp sha512 sve asimdfhm dit uscat ilrcpc flagm ssbs sb paca pacg dcpodp sve2 sveaes svepmull svebitperm svesha3 svesm4 flagm2 frint svei8mm svebf16 i8mm bf16 dgh bti ecv afp wfxt
L1d cache: 896 KiB (14 instances)
L1i cache: 896 KiB (14 instances)
L2 cache: 14 MiB (14 instances)
NUMA node(s): 1
NUMA node0 CPU(s): 0-13
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Not affected
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1: Mitigation; __user pointer sanitization
Vulnerability Spectre v2: Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
==============================
Versions of relevant libraries
==============================
[pip3] flashinfer-python==0.4.0
[pip3] numpy==2.2.6
[pip3] nvidia-cublas-cu12==12.8.4.1
[pip3] nvidia-cuda-cupti-cu12==12.8.90
[pip3] nvidia-cuda-nvrtc-cu12==12.8.93
[pip3] nvidia-cuda-runtime-cu12==12.8.90
[pip3] nvidia-cudnn-cu12==9.10.2.21
[pip3] nvidia-cudnn-frontend==1.15.0
[pip3] nvidia-cufft-cu12==11.3.3.83
[pip3] nvidia-cufile-cu12==1.13.1.3
[pip3] nvidia-curand-cu12==10.3.9.90
[pip3] nvidia-cusolver-cu12==11.7.3.90
[pip3] nvidia-cusparse-cu12==12.5.8.93
[pip3] nvidia-cusparselt-cu12==0.7.1
[pip3] nvidia-cutlass-dsl==4.2.1
[pip3] nvidia-ml-py==13.580.82
[pip3] nvidia-nccl-cu12==2.27.5
[pip3] nvidia-nvjitlink-cu12==12.8.93
[pip3] nvidia-nvshmem-cu12==3.3.24
[pip3] nvidia-nvtx-cu12==12.8.90
[pip3] pytorch-triton==3.5.0+git7416ffcb
[pip3] pyzmq==27.1.0
[pip3] torch==2.10.0.dev20251012+cu128
[pip3] torchvision==0.25.0.dev20251013
[pip3] transformers==4.57.0
[conda] flashinfer-python 0.4.0 pypi_0 pypi
[conda] numpy 2.2.6 pypi_0 pypi
[conda] nvidia-cublas-cu12 12.8.4.1 pypi_0 pypi
[conda] nvidia-cuda-cupti-cu12 12.8.90 pypi_0 pypi
[conda] nvidia-cuda-nvrtc-cu12 12.8.93 pypi_0 pypi
[conda] nvidia-cuda-runtime-cu12 12.8.90 pypi_0 pypi
[conda] nvidia-cudnn-cu12 9.10.2.21 pypi_0 pypi
[conda] nvidia-cudnn-frontend 1.15.0 pypi_0 pypi
[conda] nvidia-cufft-cu12 11.3.3.83 pypi_0 pypi
[conda] nvidia-cufile-cu12 1.13.1.3 pypi_0 pypi
[conda] nvidia-curand-cu12 10.3.9.90 pypi_0 pypi
[conda] nvidia-cusolver-cu12 11.7.3.90 pypi_0 pypi
[conda] nvidia-cusparse-cu12 12.5.8.93 pypi_0 pypi
[conda] nvidia-cusparselt-cu12 0.7.1 pypi_0 pypi
[conda] nvidia-cutlass-dsl 4.2.1 pypi_0 pypi
[conda] nvidia-ml-py 13.580.82 pypi_0 pypi
[conda] nvidia-nccl-cu12 2.27.5 pypi_0 pypi
[conda] nvidia-nvjitlink-cu12 12.8.93 pypi_0 pypi
[conda] nvidia-nvshmem-cu12 3.3.24 pypi_0 pypi
[conda] nvidia-nvtx-cu12 12.8.90 pypi_0 pypi
[conda] pytorch-triton 3.5.0+git7416ffcb pypi_0 pypi
[conda] pyzmq 27.1.0 pypi_0 pypi
[conda] torch 2.10.0.dev20251012+cu128 pypi_0 pypi
[conda] torchvision 0.25.0.dev20251013 pypi_0 pypi
[conda] transformers 4.57.0 pypi_0 pypi
==============================
vLLM Info
==============================
ROCM Version : Could not collect
vLLM Version : 0.11.0rc2.dev389+ge51928192.d20251013 (git sha: e51928192, date: 20251013)
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled
GPU Topology:
GPU0 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X 0-13 0 N/A
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
==============================
Environment Variables
==============================
LD_LIBRARY_PATH=/usr/local/cuda/lib64:/usr/local/cuda/lib64:
CUDA_HOME=/usr/local/cuda
CUDA_HOME=/usr/local/cuda
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
TORCHINDUCTOR_CACHE_DIR=/tmp/torchinductor_xxx
🐛 Describe the bug
The raw output log
(llm) xxx@xxx-thor:~/proj$ vllm serve --config /home/xxx/proj/infer/vllm_config/holo-1.5-7b.yaml
INFO 10-14 17:06:40 [__init__.py:224] Automatically detected platform cuda.
(APIServer pid=107364) INFO 10-14 17:06:44 [api_server.py:1870] vLLM API server version 0.11.0rc2.dev389+ge51928192.d20251013
(APIServer pid=107364) INFO 10-14 17:06:44 [utils.py:239] non-default args: {'port': 7878, 'model': '/home/xxx/proj/ckpts/holo1_5-7b', 'trust_remote_code': True, 'max_model_len': 16000, 'served_model_name': ['holo1.5-7b'], 'gpu_memory_utilization': 0.3, 'enable_prefix_caching': True}
(APIServer pid=107364) INFO 10-14 17:06:51 [model.py:653] Resolved architecture: Qwen2_5_VLForConditionalGeneration
(APIServer pid=107364) `torch_dtype` is deprecated! Use `dtype` instead!
(APIServer pid=107364) INFO 10-14 17:06:51 [model.py:1714] Using max model len 16000
(APIServer pid=107364) The argument `trust_remote_code` is to be used with Auto classes. It has no effect here and is ignored.
(APIServer pid=107364) INFO 10-14 17:06:51 [scheduler.py:225] Chunked prefill is enabled with max_num_batched_tokens=2048.
INFO 10-14 17:06:56 [__init__.py:224] Automatically detected platform cuda.
(EngineCore_DP0 pid=107532) INFO 10-14 17:06:59 [core.py:727] Waiting for init message from front-end.
(EngineCore_DP0 pid=107532) INFO 10-14 17:06:59 [core.py:94] Initializing a V1 LLM engine (v0.11.0rc2.dev389+ge51928192.d20251013) with config: model='/home/xxx/proj/ckpts/holo1_5-7b', speculative_config=None, tokenizer='/home/xxx/proj/ckpts/holo1_5-7b', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, tokenizer_revision=None, trust_remote_code=True, dtype=torch.bfloat16, max_seq_len=16000, download_dir=None, load_format=auto, tensor_parallel_size=1, pipeline_parallel_size=1, data_parallel_size=1, disable_custom_all_reduce=False, quantization=None, enforce_eager=False, kv_cache_dtype=auto, device_config=cuda, structured_outputs_config=StructuredOutputsConfig(backend='auto', disable_fallback=False, disable_any_whitespace=False, disable_additional_properties=False, reasoning_parser=''), observability_config=ObservabilityConfig(show_hidden_metrics_for_version=None, otlp_traces_endpoint=None, collect_detailed_traces=None), seed=0, served_model_name=holo1.5-7b, enable_prefix_caching=True, chunked_prefill_enabled=True, pooler_config=None, compilation_config={'level': 3, 'debug_dump_path': None, 'cache_dir': '', 'backend': '', 'custom_ops': [], 'splitting_ops': ['vllm.unified_attention', 'vllm.unified_attention_with_output', 'vllm.unified_mla_attention', 'vllm.unified_mla_attention_with_output', 'vllm.mamba_mixer2', 'vllm.mamba_mixer', 'vllm.short_conv', 'vllm.linear_attention', 'vllm.plamo2_mamba_mixer', 'vllm.gdn_attention', 'vllm.sparse_attn_indexer'], 'use_inductor': True, 'compile_sizes': [], 'inductor_compile_config': {'enable_auto_functionalized_v2': False}, 'inductor_passes': {}, 'cudagraph_mode': <CUDAGraphMode.FULL_AND_PIECEWISE: (2, 1)>, 'use_cudagraph': True, 'cudagraph_num_of_warmups': 1, 'cudagraph_capture_sizes': [512, 504, 496, 488, 480, 472, 464, 456, 448, 440, 432, 424, 416, 408, 400, 392, 384, 376, 368, 360, 352, 344, 336, 328, 320, 312, 304, 296, 288, 280, 272, 264, 256, 248, 240, 232, 224, 216, 208, 200, 192, 184, 176, 168, 160, 152, 144, 136, 128, 120, 112, 104, 96, 88, 80, 72, 64, 56, 48, 40, 32, 24, 16, 8, 4, 2, 1], 'cudagraph_copy_inputs': False, 'full_cuda_graph': True, 'use_inductor_graph_partition': False, 'pass_config': {}, 'max_capture_size': 512, 'local_cache_dir': None}
(EngineCore_DP0 pid=107532) /home/xxx/miniconda3/envs/llm/lib/python3.12/site-packages/torch/cuda/__init__.py:327: UserWarning:
(EngineCore_DP0 pid=107532) NVIDIA Thor with CUDA capability sm_110 is not compatible with the current PyTorch installation.
(EngineCore_DP0 pid=107532) The current PyTorch install supports CUDA capabilities sm_80 sm_90 sm_100 sm_120.
(EngineCore_DP0 pid=107532) If you want to use the NVIDIA Thor GPU with PyTorch, please check the instructions at https://pytorch.org/get-started/locally/
(EngineCore_DP0 pid=107532)
(EngineCore_DP0 pid=107532) warnings.warn(
(EngineCore_DP0 pid=107532) ERROR 10-14 17:07:18 [core.py:790] EngineCore failed to start.
(EngineCore_DP0 pid=107532) ERROR 10-14 17:07:18 [core.py:790] Traceback (most recent call last):
(EngineCore_DP0 pid=107532) ERROR 10-14 17:07:18 [core.py:790] File "/home/xxx/miniconda3/envs/llm/lib/python3.12/site-packages/vllm/v1/engine/core.py", line 781, in run_engine_core
(EngineCore_DP0 pid=107532) ERROR 10-14 17:07:18 [core.py:790] engine_core = EngineCoreProc(*args, **kwargs)
(EngineCore_DP0 pid=107532) ERROR 10-14 17:07:18 [core.py:790] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(EngineCore_DP0 pid=107532) ERROR 10-14 17:07:18 [core.py:790] File "/home/xxx/miniconda3/envs/llm/lib/python3.12/site-packages/vllm/v1/engine/core.py", line 553, in __init__
(EngineCore_DP0 pid=107532) ERROR 10-14 17:07:18 [core.py:790] super().__init__(
(EngineCore_DP0 pid=107532) ERROR 10-14 17:07:18 [core.py:790] File "/home/xxx/miniconda3/envs/llm/lib/python3.12/site-packages/vllm/v1/engine/core.py", line 103, in __init__
(EngineCore_DP0 pid=107532) ERROR 10-14 17:07:18 [core.py:790] self.model_executor = executor_class(vllm_config)
(EngineCore_DP0 pid=107532) ERROR 10-14 17:07:18 [core.py:790] ^^^^^^^^^^^^^^^^^^^^^^^^^^^
(EngineCore_DP0 pid=107532) ERROR 10-14 17:07:18 [core.py:790] File "/home/xxx/miniconda3/envs/llm/lib/python3.12/site-packages/vllm/executor/executor_base.py", line 54, in __init__
(EngineCore_DP0 pid=107532) ERROR 10-14 17:07:18 [core.py:790] self._init_executor()
(EngineCore_DP0 pid=107532) ERROR 10-14 17:07:18 [core.py:790] File "/home/xxx/miniconda3/envs/llm/lib/python3.12/site-packages/vllm/executor/uniproc_executor.py", line 46, in _init_executor
(EngineCore_DP0 pid=107532) ERROR 10-14 17:07:18 [core.py:790] self.collective_rpc("init_device")
(EngineCore_DP0 pid=107532) ERROR 10-14 17:07:18 [core.py:790] File "/home/xxx/miniconda3/envs/llm/lib/python3.12/site-packages/vllm/executor/uniproc_executor.py", line 73, in collective_rpc
(EngineCore_DP0 pid=107532) ERROR 10-14 17:07:18 [core.py:790] return [run_method(self.driver_worker, method, args, kwargs)]
(EngineCore_DP0 pid=107532) ERROR 10-14 17:07:18 [core.py:790] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(EngineCore_DP0 pid=107532) ERROR 10-14 17:07:18 [core.py:790] File "/home/xxx/miniconda3/envs/llm/lib/python3.12/site-packages/vllm/utils/__init__.py", line 2975, in run_method
(EngineCore_DP0 pid=107532) ERROR 10-14 17:07:18 [core.py:790] return func(*args, **kwargs)
(EngineCore_DP0 pid=107532) ERROR 10-14 17:07:18 [core.py:790] ^^^^^^^^^^^^^^^^^^^^^
(EngineCore_DP0 pid=107532) ERROR 10-14 17:07:18 [core.py:790] File "/home/xxx/miniconda3/envs/llm/lib/python3.12/site-packages/vllm/v1/worker/worker_base.py", line 330, in init_device
(EngineCore_DP0 pid=107532) ERROR 10-14 17:07:18 [core.py:790] self.worker.init_device() # type: ignore
(EngineCore_DP0 pid=107532) ERROR 10-14 17:07:18 [core.py:790] ^^^^^^^^^^^^^^^^^^^^^^^^^
(EngineCore_DP0 pid=107532) ERROR 10-14 17:07:18 [core.py:790] File "/home/xxx/miniconda3/envs/llm/lib/python3.12/site-packages/vllm/v1/worker/gpu_worker.py", line 171, in init_device
(EngineCore_DP0 pid=107532) ERROR 10-14 17:07:18 [core.py:790] current_platform.set_device(self.device)
(EngineCore_DP0 pid=107532) ERROR 10-14 17:07:18 [core.py:790] File "/home/xxx/miniconda3/envs/llm/lib/python3.12/site-packages/vllm/platforms/cuda.py", line 85, in set_device
(EngineCore_DP0 pid=107532) ERROR 10-14 17:07:18 [core.py:790] _ = torch.zeros(1, device=device)
(EngineCore_DP0 pid=107532) ERROR 10-14 17:07:18 [core.py:790] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(EngineCore_DP0 pid=107532) ERROR 10-14 17:07:18 [core.py:790] torch.AcceleratorError: CUDA error: no kernel image is available for execution on the device
(EngineCore_DP0 pid=107532) ERROR 10-14 17:07:18 [core.py:790] Search for `cudaErrorNoKernelImageForDevice' in https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__TYPES.html for more information.
(EngineCore_DP0 pid=107532) ERROR 10-14 17:07:18 [core.py:790] CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.
(EngineCore_DP0 pid=107532) ERROR 10-14 17:07:18 [core.py:790] For debugging consider passing CUDA_LAUNCH_BLOCKING=1
(EngineCore_DP0 pid=107532) ERROR 10-14 17:07:18 [core.py:790] Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.
(EngineCore_DP0 pid=107532) ERROR 10-14 17:07:18 [core.py:790]
(EngineCore_DP0 pid=107532) Process EngineCore_DP0:
(EngineCore_DP0 pid=107532) Traceback (most recent call last):
(EngineCore_DP0 pid=107532) File "/home/xxx/miniconda3/envs/llm/lib/python3.12/multiprocessing/process.py", line 314, in _bootstrap
(EngineCore_DP0 pid=107532) self.run()
(EngineCore_DP0 pid=107532) File "/home/xxx/miniconda3/envs/llm/lib/python3.12/multiprocessing/process.py", line 108, in run
(EngineCore_DP0 pid=107532) self._target(*self._args, **self._kwargs)
(EngineCore_DP0 pid=107532) File "/home/xxx/miniconda3/envs/llm/lib/python3.12/site-packages/vllm/v1/engine/core.py", line 794, in run_engine_core
(EngineCore_DP0 pid=107532) raise e
(EngineCore_DP0 pid=107532) File "/home/xxx/miniconda3/envs/llm/lib/python3.12/site-packages/vllm/v1/engine/core.py", line 781, in run_engine_core
(EngineCore_DP0 pid=107532) engine_core = EngineCoreProc(*args, **kwargs)
(EngineCore_DP0 pid=107532) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(EngineCore_DP0 pid=107532) File "/home/xxx/miniconda3/envs/llm/lib/python3.12/site-packages/vllm/v1/engine/core.py", line 553, in __init__
(EngineCore_DP0 pid=107532) super().__init__(
(EngineCore_DP0 pid=107532) File "/home/xxx/miniconda3/envs/llm/lib/python3.12/site-packages/vllm/v1/engine/core.py", line 103, in __init__
(EngineCore_DP0 pid=107532) self.model_executor = executor_class(vllm_config)
(EngineCore_DP0 pid=107532) ^^^^^^^^^^^^^^^^^^^^^^^^^^^
(EngineCore_DP0 pid=107532) File "/home/xxx/miniconda3/envs/llm/lib/python3.12/site-packages/vllm/executor/executor_base.py", line 54, in __init__
(EngineCore_DP0 pid=107532) self._init_executor()
(EngineCore_DP0 pid=107532) File "/home/xxx/miniconda3/envs/llm/lib/python3.12/site-packages/vllm/executor/uniproc_executor.py", line 46, in _init_executor
(EngineCore_DP0 pid=107532) self.collective_rpc("init_device")
(EngineCore_DP0 pid=107532) File "/home/xxx/miniconda3/envs/llm/lib/python3.12/site-packages/vllm/executor/uniproc_executor.py", line 73, in collective_rpc
(EngineCore_DP0 pid=107532) return [run_method(self.driver_worker, method, args, kwargs)]
(EngineCore_DP0 pid=107532) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(EngineCore_DP0 pid=107532) File "/home/xxx/miniconda3/envs/llm/lib/python3.12/site-packages/vllm/utils/__init__.py", line 2975, in run_method
(EngineCore_DP0 pid=107532) return func(*args, **kwargs)
(EngineCore_DP0 pid=107532) ^^^^^^^^^^^^^^^^^^^^^
(EngineCore_DP0 pid=107532) File "/home/xxx/miniconda3/envs/llm/lib/python3.12/site-packages/vllm/v1/worker/worker_base.py", line 330, in init_device
(EngineCore_DP0 pid=107532) self.worker.init_device() # type: ignore
(EngineCore_DP0 pid=107532) ^^^^^^^^^^^^^^^^^^^^^^^^^
(EngineCore_DP0 pid=107532) File "/home/xxx/miniconda3/envs/llm/lib/python3.12/site-packages/vllm/v1/worker/gpu_worker.py", line 171, in init_device
(EngineCore_DP0 pid=107532) current_platform.set_device(self.device)
(EngineCore_DP0 pid=107532) File "/home/xxx/miniconda3/envs/llm/lib/python3.12/site-packages/vllm/platforms/cuda.py", line 85, in set_device
(EngineCore_DP0 pid=107532) _ = torch.zeros(1, device=device)
(EngineCore_DP0 pid=107532) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(EngineCore_DP0 pid=107532) torch.AcceleratorError: CUDA error: no kernel image is available for execution on the device
(EngineCore_DP0 pid=107532) Search for `cudaErrorNoKernelImageForDevice' in https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__TYPES.html for more information.
(EngineCore_DP0 pid=107532) CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.
(EngineCore_DP0 pid=107532) For debugging consider passing CUDA_LAUNCH_BLOCKING=1
(EngineCore_DP0 pid=107532) Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.
(EngineCore_DP0 pid=107532)
(APIServer pid=107364) Traceback (most recent call last):
(APIServer pid=107364) File "/home/xxx/miniconda3/envs/llm/bin/vllm", line 7, in <module>
(APIServer pid=107364) sys.exit(main())
(APIServer pid=107364) ^^^^^^
(APIServer pid=107364) File "/home/xxx/miniconda3/envs/llm/lib/python3.12/site-packages/vllm/entrypoints/cli/main.py", line 75, in main
(APIServer pid=107364) args.dispatch_function(args)
(APIServer pid=107364) File "/home/xxx/miniconda3/envs/llm/lib/python3.12/site-packages/vllm/entrypoints/cli/serve.py", line 63, in cmd
(APIServer pid=107364) uvloop.run(run_server(args))
(APIServer pid=107364) File "/home/xxx/miniconda3/envs/llm/lib/python3.12/site-packages/uvloop/__init__.py", line 109, in run
(APIServer pid=107364) return __asyncio.run(
(APIServer pid=107364) ^^^^^^^^^^^^^^
(APIServer pid=107364) File "/home/xxx/miniconda3/envs/llm/lib/python3.12/asyncio/runners.py", line 195, in run
(APIServer pid=107364) return runner.run(main)
(APIServer pid=107364) ^^^^^^^^^^^^^^^^
(APIServer pid=107364) File "/home/xxx/miniconda3/envs/llm/lib/python3.12/asyncio/runners.py", line 118, in run
(APIServer pid=107364) return self._loop.run_until_complete(task)
(APIServer pid=107364) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(APIServer pid=107364) File "uvloop/loop.pyx", line 1518, in uvloop.loop.Loop.run_until_complete
(APIServer pid=107364) File "/home/xxx/miniconda3/envs/llm/lib/python3.12/site-packages/uvloop/__init__.py", line 61, in wrapper
(APIServer pid=107364) return await main
(APIServer pid=107364) ^^^^^^^^^^
(APIServer pid=107364) File "/home/xxx/miniconda3/envs/llm/lib/python3.12/site-packages/vllm/entrypoints/openai/api_server.py", line 1914, in run_server
(APIServer pid=107364) await run_server_worker(listen_address, sock, args, **uvicorn_kwargs)
(APIServer pid=107364) File "/home/xxx/miniconda3/envs/llm/lib/python3.12/site-packages/vllm/entrypoints/openai/api_server.py", line 1930, in run_server_worker
(APIServer pid=107364) async with build_async_engine_client(
(APIServer pid=107364) ^^^^^^^^^^^^^^^^^^^^^^^^^^
(APIServer pid=107364) File "/home/xxx/miniconda3/envs/llm/lib/python3.12/contextlib.py", line 210, in __aenter__
(APIServer pid=107364) return await anext(self.gen)
(APIServer pid=107364) ^^^^^^^^^^^^^^^^^^^^^
(APIServer pid=107364) File "/home/xxx/miniconda3/envs/llm/lib/python3.12/site-packages/vllm/entrypoints/openai/api_server.py", line 191, in build_async_engine_client
(APIServer pid=107364) async with build_async_engine_client_from_engine_args(
(APIServer pid=107364) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(APIServer pid=107364) File "/home/xxx/miniconda3/envs/llm/lib/python3.12/contextlib.py", line 210, in __aenter__
(APIServer pid=107364) return await anext(self.gen)
(APIServer pid=107364) ^^^^^^^^^^^^^^^^^^^^^
(APIServer pid=107364) File "/home/xxx/miniconda3/envs/llm/lib/python3.12/site-packages/vllm/entrypoints/openai/api_server.py", line 238, in build_async_engine_client_from_engine_args
(APIServer pid=107364) async_llm = AsyncLLM.from_vllm_config(
(APIServer pid=107364) ^^^^^^^^^^^^^^^^^^^^^^^^^^
(APIServer pid=107364) File "/home/xxx/miniconda3/envs/llm/lib/python3.12/site-packages/vllm/utils/__init__.py", line 1335, in inner
(APIServer pid=107364) return fn(*args, **kwargs)
(APIServer pid=107364) ^^^^^^^^^^^^^^^^^^^
(APIServer pid=107364) File "/home/xxx/miniconda3/envs/llm/lib/python3.12/site-packages/vllm/v1/engine/async_llm.py", line 205, in from_vllm_config
(APIServer pid=107364) return cls(
(APIServer pid=107364) ^^^^
(APIServer pid=107364) File "/home/xxx/miniconda3/envs/llm/lib/python3.12/site-packages/vllm/v1/engine/async_llm.py", line 129, in __init__
(APIServer pid=107364) self.engine_core = EngineCoreClient.make_async_mp_client(
(APIServer pid=107364) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(APIServer pid=107364) File "/home/xxx/miniconda3/envs/llm/lib/python3.12/site-packages/vllm/v1/engine/core_client.py", line 121, in make_async_mp_client
(APIServer pid=107364) return AsyncMPClient(*client_args)
(APIServer pid=107364) ^^^^^^^^^^^^^^^^^^^^^^^^^^^
(APIServer pid=107364) File "/home/xxx/miniconda3/envs/llm/lib/python3.12/site-packages/vllm/v1/engine/core_client.py", line 809, in __init__
(APIServer pid=107364) super().__init__(
(APIServer pid=107364) File "/home/xxx/miniconda3/envs/llm/lib/python3.12/site-packages/vllm/v1/engine/core_client.py", line 470, in __init__
(APIServer pid=107364) with launch_core_engines(vllm_config, executor_class, log_stats) as (
(APIServer pid=107364) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(APIServer pid=107364) File "/home/xxx/miniconda3/envs/llm/lib/python3.12/contextlib.py", line 144, in __exit__
(APIServer pid=107364) next(self.gen)
(APIServer pid=107364) File "/home/xxx/miniconda3/envs/llm/lib/python3.12/site-packages/vllm/v1/engine/utils.py", line 815, in launch_core_engines
(APIServer pid=107364) wait_for_engine_startup(
(APIServer pid=107364) File "/home/xxx/miniconda3/envs/llm/lib/python3.12/site-packages/vllm/v1/engine/utils.py", line 872, in wait_for_engine_startup
(APIServer pid=107364) raise RuntimeError(
(APIServer pid=107364) RuntimeError: Engine core initialization failed. See root cause above. Failed core proc(s): {}
# run script
vllm serve --config /home/xxx/proj/infer/vllm_config/holo-1.5-7b.yaml
# core log
...
(EngineCore_DP0 pid=107532) /home/xxx/miniconda3/envs/llm/lib/python3.12/site-packages/torch/cuda/__init__.py:327: UserWarning:
(EngineCore_DP0 pid=107532) NVIDIA Thor with CUDA capability sm_110 is not compatible with the current PyTorch installation.
(EngineCore_DP0 pid=107532) The current PyTorch install supports CUDA capabilities sm_80 sm_90 sm_100 sm_120.
...
(EngineCore_DP0 pid=107532) ERROR 10-14 17:07:18 [core.py:790] File "/home/xxx/miniconda3/envs/llm/lib/python3.12/site-packages/vllm/platforms/cuda.py", line 85, in set_device
(EngineCore_DP0 pid=107532) ERROR 10-14 17:07:18 [core.py:790] _ = torch.zeros(1, device=device)
(EngineCore_DP0 pid=107532) ERROR 10-14 17:07:18 [core.py:790] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(EngineCore_DP0 pid=107532) ERROR 10-14 17:07:18 [core.py:790] torch.AcceleratorError: CUDA error: no kernel image is available for execution on the device
...
Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
Metadata
Metadata
Assignees
Labels
bugSomething isn't workingSomething isn't working