@@ -148,7 +148,17 @@ More models with different backbones will be added to the model zoo.
148148
149149### Hybrid Task Cascade (HTC)
150150
151- Please refer to [ HTC] ( configs/htc/README.md ) for details.
151+ | Backbone | Style | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | mask AP | Download |
152+ | :---------:| :-------:| :-------:| :--------:| :-------------------:| :--------------:| :------:| :-------:| :--------:|
153+ | R-50-FPN | pytorch | 1x | 7.4 | 0.936 | 3.5 | 42.2 | 37.3 | [ model] ( https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/htc/htc_r50_fpn_1x_20190408-878c1712.pth ) |
154+ | R-50-FPN | pytorch | 20e | - | - | - | 43.2 | 38.0 | [ model] ( https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/htc/htc_r50_fpn_20e_20190408-c03b7015.pth ) |
155+ | R-101-FPN | pytorch | 20e | 9.3 | 1.051 | 3.4 | 44.9 | 39.4 | [ model] ( https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/htc/htc_r101_fpn_20e_20190408-a2e586db.pth ) |
156+ | X-101-32x4d-FPN | pytorch | 20e| 5.8 | 0.769 | 3.3 | 46.1 | 40.3 | [ model] ( https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/htc/htc_x101_32x4d_fpn_20e_20190408-9eae4d0b.pth ) |
157+ | X-101-64x4d-FPN | pytorch | 20e| 7.5 | 1.120 | 3.0 | 47.0 | 40.9 | [ model] ( https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/htc/htc_x101_64x4d_fpn_20e_20190408-497f2561.pth ) |
158+
159+ ** Notes:**
160+
161+ - Please refer to [ Hybrid Task Cascade] ( configs/gn/README.md ) for details and more a powerful model (50.7/43.9).
152162
153163### SSD
154164
@@ -172,41 +182,16 @@ Please refer to [HTC](configs/htc/README.md) for details.
172182
173183### Group Normalization (GN)
174184
175- | Backbone | model | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | mask AP | Download |
176- | :-------------:| :----------:| :-------:| :--------:| :-------------------:| :--------------:| :------:| :-------:| :--------:|
177- | R-50-FPN (d) | Mask R-CNN | 2x | 7.2 | 0.806 | 5.4 | 39.9 | 36.1 | [ model] ( https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r50_fpn_gn_2x_20180113-86832cf2.pth ) |
178- | R-50-FPN (d) | Mask R-CNN | 3x | 7.2 | 0.806 | 5.4 | 40.2 | 36.5 | [ model] ( https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r50_fpn_gn_3x_20180113-8e82f48d.pth ) |
179- | R-101-FPN (d) | Mask R-CNN | 2x | 9.9 | 0.970 | 4.8 | 41.6 | 37.1 | [ model] ( https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r101_fpn_gn_2x_20180113-9598649c.pth ) |
180- | R-101-FPN (d) | Mask R-CNN | 3x | 9.9 | 0.970 | 4.8 | 41.7 | 37.3 | [ model] ( https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r101_fpn_gn_3x_20180113-a14ffb96.pth ) |
181- | R-50-FPN (c) | Mask R-CNN | 2x | 7.2 | 0.806 | 5.4 | 39.7 | 35.9 | [ model] ( https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r50_fpn_gn_contrib_2x_20180113-ec93305c.pth ) |
182- | R-50-FPN (c) | Mask R-CNN | 3x | 7.2 | 0.806 | 5.4 | 40.1 | 36.2 | [ model] ( https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r50_fpn_gn_contrib_3x_20180113-9d230cab.pth ) |
185+ Please refer to [ Group Normalization] ( configs/gn/README.md ) for details.
183186
184- ** Notes:**
185- - (d) means pretrained model converted from Detectron, and (c) means the contributed model pretrained by [ @thangvubk ] ( https://github.com/thangvubk ) .
186- - The ` 3x ` schedule is epoch [ 28, 34, 36] .
187+ ### Weight Standardization
187188
188- ### Deformable Convolution v2
189+ Please refer to [ Weight Standardization ] ( configs/gn+ws/README.md ) for details.
189190
190- | Backbone | Model | Style | Conv | Pool | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | mask AP | Download |
191- | :---------:| :------------:| :-------:| :-------------:| :------:| :-------:| :--------:| :-------------------:| :--------------:| :------:| :-------:| :--------:|
192- | R-50-FPN | Faster | pytorch | dconv(c3-c5) | - | 1x | 3.9 | 0.594 | 10.2 | 40.0 | - | [ model] ( https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/faster_rcnn_dconv_c3-c5_r50_fpn_1x_20190125-e41688c9.pth ) |
193- | R-50-FPN | Faster | pytorch | mdconv(c3-c5) | - | 1x | 3.7 | 0.598 | 10.0 | 40.3 | - | [ model] ( https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/faster_rcnn_mdconv_c3-c5_r50_fpn_1x_20190125-1b768045.pth ) |
194- | R-50-FPN | Faster | pytorch | - | dpool | 1x | 4.6 | 0.714 | 8.7 | 37.9 | - | [ model] ( https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/faster_rcnn_dpool_r50_fpn_1x_20190125-f4fc1d70.pth ) |
195- | R-50-FPN | Faster | pytorch | - | mdpool | 1x | 5.2 | 0.769 | 8.2 | 38.1 | - | [ model] ( https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/faster_rcnn_mdpool_r50_fpn_1x_20190125-473d0f3d.pth ) |
196- | R-101-FPN | Faster | pytorch | dconv(c3-c5) | - | 1x | 5.8 | 0.811 | 8.0 | 42.1 | - | [ model] ( https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/faster_rcnn_dconv_c3-c5_r101_fpn_1x_20190125-a7e31b65.pth ) |
197- | X-101-32x4d-FPN | Faster | pytorch | dconv(c3-c5) | - | 1x | 7.1 | 1.126 | 6.6 | 43.5 | - | [ model] ( https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/faster_rcnn_dconv_c3-c5_x101_32x4d_fpn_1x_20190201-6d46376f.pth ) |
198- | R-50-FPN | Mask | pytorch | dconv(c3-c5) | - | 1x | 4.5 | 0.712 | 7.7 | 41.1 | 37.2 | [ model] ( https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/mask_rcnn_dconv_c3-c5_r50_fpn_1x_20190125-4f94ff79.pth ) |
199- | R-50-FPN | Mask | pytorch | mdconv(c3-c5) | - | 1x | 4.5 | 0.712 | 7.7 | 41.4 | 37.4 | [ model] ( https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/mask_rcnn_mdconv_c3-c5_r50_fpn_1x_20190125-c5601dc3.pth ) |
200- | R-101-FPN | Mask | pytorch | dconv(c3-c5) | - | 1x | 6.4 | 0.939 | 6.5 | 43.2 | 38.7 | [ model] ( https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/mask_rcnn_dconv_c3-c5_r101_fpn_1x_20190125-decb6db5.pth ) |
201- | R-50-FPN | Cascade | pytorch | dconv(c3-c5) | - | 1x | 4.4 | 0.660 | 7.6 | 44.1 | - | [ model] ( https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/cascade_rcnn_dconv_c3-c5_r50_fpn_1x_20190125-dfa53166.pth ) |
202- | R-101-FPN | Cascade | pytorch | dconv(c3-c5) | - | 1x | 6.3 | 0.881 | 6.8 | 45.1 | - | [ model] ( https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/cascade_rcnn_dconv_c3-c5_r101_fpn_1x_20190125-aaa877cc.pth ) |
203- | R-50-FPN | Cascade Mask | pytorch | dconv(c3-c5) | - | 1x | 6.6 | 0.942 | 5.7 | 44.5 | 38.3 | [ model] ( https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/cascade_mask_rcnn_dconv_c3-c5_r50_fpn_1x_20190125-09d8a443.pth ) |
204- | R-101-FPN | Cascade Mask | pytorch | dconv(c3-c5) | - | 1x | 8.5 | 1.156 | 5.1 | 45.8 | 39.5 | [ model] ( https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/cascade_mask_rcnn_dconv_c3-c5_r101_fpn_1x_20190125-0d62c190.pth ) |
191+ ### Deformable Convolution v2
205192
206- ** Notes: **
193+ Please refer to [ Deformable Convolutional Networks ] ( configs/dcn/README.md ) for details.
207194
208- - ` dconv ` and ` mdconv ` denote (modulated) deformable convolution, ` c3-c5 ` means adding dconv in resnet stage 3 to 5. ` dpool ` and ` mdpool ` denote (modulated) deformable roi pooling.
209- - The dcn ops are modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch , which should be more memory efficient and slightly faster.
210195
211196## Comparison with Detectron and maskrcnn-benchmark
212197
0 commit comments