Skip to content

Commit 8ff49d3

Browse files
committed
Release a COCO Faster R-CNN model
1 parent 5f04301 commit 8ff49d3

File tree

3 files changed

+54
-8
lines changed

3 files changed

+54
-8
lines changed

.gitignore

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1,3 +1,5 @@
11
*.pyc
22
.ipynb_checkpoints
33
lib/build
4+
lib/pycocotools/_mask.c
5+
lib/pycocotools/_mask.so

lib/pycocotools/coco.py

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -106,8 +106,9 @@ def createIndex(self):
106106
for cat in self.dataset['categories']:
107107
cats[cat['id']] = cat
108108
catToImgs = {cat['id']: [] for cat in self.dataset['categories']}
109-
for ann in self.dataset['annotations']:
110-
catToImgs[ann['category_id']] += [ann['image_id']]
109+
if 'annotations' in self.dataset:
110+
for ann in self.dataset['annotations']:
111+
catToImgs[ann['category_id']] += [ann['image_id']]
111112

112113
print 'index created!'
113114

models/README.md

Lines changed: 49 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,50 @@
1-
Prototxt files that define models and solvers.
1+
## Model Zoo
22

3-
Three models are defined, with some variations of each to support experiments
4-
in the paper.
5-
- Caffenet (model **S**)
6-
- VGG_CNN_M_1024 (model **M**)
7-
- VGG16 (model **L**)
3+
### COCO Faster R-CNN VGG-16 trained using end-to-end
4+
5+
Model URL: www.cs.berkeley.edu/~rbg/faster-rcnn-data/coco_vgg16_faster_rcnn_final.caffemodel
6+
7+
Training command:
8+
```
9+
tools/train_net.py \
10+
--gpu 0 \
11+
--solver ./models/coco/VGG16/faster_rcnn_end2end/solver.prototxt \
12+
--weights data/imagenet_models/VGG16.v2.caffemodel \
13+
--imdb coco_2014_train+coco_2014_valminusminival \
14+
--iters 490000 \
15+
--cfg ./experiments/cfgs/faster_rcnn_end2end.yml
16+
```
17+
18+
`py-faster-rcnn` commit: 68eec95
19+
20+
test-dev2015 results
21+
```
22+
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.242
23+
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.453
24+
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.235
25+
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.077
26+
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.264
27+
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.371
28+
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.238
29+
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.340
30+
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.346
31+
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.120
32+
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.385
33+
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.544
34+
```
35+
36+
test-standard2015 results
37+
```
38+
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.242
39+
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.453
40+
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.234
41+
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.072
42+
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.264
43+
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.369
44+
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.238
45+
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.341
46+
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.347
47+
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.115
48+
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.389
49+
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.544
50+
```

0 commit comments

Comments
 (0)