|
1 | | -Prototxt files that define models and solvers. |
| 1 | +## Model Zoo |
2 | 2 |
|
3 | | -Three models are defined, with some variations of each to support experiments |
4 | | -in the paper. |
5 | | - - Caffenet (model **S**) |
6 | | - - VGG_CNN_M_1024 (model **M**) |
7 | | - - VGG16 (model **L**) |
| 3 | +### COCO Faster R-CNN VGG-16 trained using end-to-end |
| 4 | + |
| 5 | +Model URL: www.cs.berkeley.edu/~rbg/faster-rcnn-data/coco_vgg16_faster_rcnn_final.caffemodel |
| 6 | + |
| 7 | +Training command: |
| 8 | +``` |
| 9 | +tools/train_net.py \ |
| 10 | + --gpu 0 \ |
| 11 | + --solver ./models/coco/VGG16/faster_rcnn_end2end/solver.prototxt \ |
| 12 | + --weights data/imagenet_models/VGG16.v2.caffemodel \ |
| 13 | + --imdb coco_2014_train+coco_2014_valminusminival \ |
| 14 | + --iters 490000 \ |
| 15 | + --cfg ./experiments/cfgs/faster_rcnn_end2end.yml |
| 16 | +``` |
| 17 | + |
| 18 | +`py-faster-rcnn` commit: 68eec95 |
| 19 | + |
| 20 | +test-dev2015 results |
| 21 | +``` |
| 22 | + Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.242 |
| 23 | + Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.453 |
| 24 | + Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.235 |
| 25 | + Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.077 |
| 26 | + Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.264 |
| 27 | + Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.371 |
| 28 | + Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.238 |
| 29 | + Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.340 |
| 30 | + Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.346 |
| 31 | + Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.120 |
| 32 | + Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.385 |
| 33 | + Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.544 |
| 34 | +``` |
| 35 | + |
| 36 | +test-standard2015 results |
| 37 | +``` |
| 38 | + Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.242 |
| 39 | + Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.453 |
| 40 | + Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.234 |
| 41 | + Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.072 |
| 42 | + Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.264 |
| 43 | + Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.369 |
| 44 | + Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.238 |
| 45 | + Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.341 |
| 46 | + Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.347 |
| 47 | + Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.115 |
| 48 | + Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.389 |
| 49 | + Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.544 |
| 50 | +``` |
0 commit comments