|
| 1 | +# coding:UTF-8 |
| 2 | +''' |
| 3 | +Date:20160928 |
| 4 | +@author: zhaozhiyong |
| 5 | +''' |
| 6 | + |
| 7 | +import numpy as np |
| 8 | + |
| 9 | +def load_data(file_path): |
| 10 | + '''导入训练数据 |
| 11 | + input: file_path(string):训练数据 |
| 12 | + output: feature(mat):特征 |
| 13 | + label(mat):标签 |
| 14 | + ''' |
| 15 | + f = open(file_path) |
| 16 | + feature = [] |
| 17 | + label = [] |
| 18 | + for line in f.readlines(): |
| 19 | + feature_tmp = [] |
| 20 | + lines = line.strip().split("\t") |
| 21 | + feature_tmp.append(1) # x0 |
| 22 | + for i in xrange(len(lines) - 1): |
| 23 | + feature_tmp.append(float(lines[i])) |
| 24 | + feature.append(feature_tmp) |
| 25 | + label.append(float(lines[-1])) |
| 26 | + f.close() |
| 27 | + return np.mat(feature), np.mat(label).T |
| 28 | + |
| 29 | +def ridge_regression(feature, label, lam): |
| 30 | + '''最小二乘的求解方法 |
| 31 | + input: feature(mat):特征 |
| 32 | + label(mat):标签 |
| 33 | + output: w(mat):回归系数 |
| 34 | + ''' |
| 35 | + n = np.shape(feature)[1] |
| 36 | + w = (feature.T * feature + lam * np.mat(np.eye(n))).I * feature.T * label |
| 37 | + return w |
| 38 | + |
| 39 | +def get_gradient(feature, label, w, lam): |
| 40 | + '''计算导函数的值 |
| 41 | + input: feature(mat):特征 |
| 42 | + label(mat):标签 |
| 43 | + output: w(mat):回归系数 |
| 44 | + ''' |
| 45 | + err = (label - feature * w).T |
| 46 | + left = err * (-1) * feature |
| 47 | + return left.T + lam * w |
| 48 | + |
| 49 | +def get_result(feature, label, w, lam): |
| 50 | + ''' |
| 51 | + input: feature(mat):特征 |
| 52 | + label(mat):标签 |
| 53 | + output: w(mat):回归系数 |
| 54 | + ''' |
| 55 | + left = (label - feature * w).T * (label - feature * w) |
| 56 | + right = lam * w.T * w |
| 57 | + return (left + right) / 2 |
| 58 | + |
| 59 | +def get_error(feature, label, w): |
| 60 | + ''' |
| 61 | + input: feature(mat):特征 |
| 62 | + label(mat):标签 |
| 63 | + output: w(mat):回归系数 |
| 64 | + ''' |
| 65 | + m = np.shape(feature)[0] |
| 66 | + left = (label - feature * w).T * (label - feature * w) |
| 67 | + return (left / (2 * m))[0, 0] |
| 68 | + |
| 69 | + |
| 70 | +def bfgs(feature, label, lam, maxCycle): |
| 71 | + '''利用bfgs训练Ridge Regression模型 |
| 72 | + input: feature(mat):特征 |
| 73 | + label(mat):标签 |
| 74 | + lam(float):正则化参数 |
| 75 | + maxCycle(int):最大迭代次数 |
| 76 | + output: w(mat):回归系数 |
| 77 | + ''' |
| 78 | + n = np.shape(feature)[1] |
| 79 | + # 1、初始化 |
| 80 | + w0 = np.mat(np.zeros((n, 1))) |
| 81 | + rho = 0.55 |
| 82 | + sigma = 0.4 |
| 83 | + Bk = np.eye(n) |
| 84 | + k = 1 |
| 85 | + while (k < maxCycle): |
| 86 | + print "\titer: ", k, "\terror: ", get_error(feature, label, w0) |
| 87 | + gk = get_gradient(feature, label, w0, lam) # 计算梯度 |
| 88 | + dk = np.mat(-np.linalg.solve(Bk, gk)) |
| 89 | + m = 0 |
| 90 | + mk = 0 |
| 91 | + while (m < 20): |
| 92 | + newf = get_result(feature, label, (w0 + rho ** m * dk), lam) |
| 93 | + oldf = get_result(feature, label, w0, lam) |
| 94 | + if (newf < oldf + sigma * (rho ** m) * (gk.T * dk)[0, 0]): |
| 95 | + mk = m |
| 96 | + break |
| 97 | + m = m + 1 |
| 98 | + |
| 99 | + # BFGS校正 |
| 100 | + w = w0 + rho ** mk * dk |
| 101 | + sk = w - w0 |
| 102 | + yk = get_gradient(feature, label, w, lam) - gk |
| 103 | + if (yk.T * sk > 0): |
| 104 | + Bk = Bk - (Bk * sk * sk.T * Bk) / (sk.T * Bk * sk) + (yk * yk.T) / (yk.T * sk) |
| 105 | + |
| 106 | + k = k + 1 |
| 107 | + w0 = w |
| 108 | + return w0 |
| 109 | + |
| 110 | +def lbfgs(feature, label, lam, maxCycle, m=10): |
| 111 | + '''利用lbfgs训练Ridge Regression模型 |
| 112 | + input: feature(mat):特征 |
| 113 | + label(mat):标签 |
| 114 | + lam(float):正则化参数 |
| 115 | + maxCycle(int):最大迭代次数 |
| 116 | + m(int):lbfgs中选择保留的个数 |
| 117 | + output: w(mat):回归系数 |
| 118 | + ''' |
| 119 | + n = np.shape(feature)[1] |
| 120 | + # 1、初始化 |
| 121 | + w0 = np.mat(np.zeros((n, 1))) |
| 122 | + rho = 0.55 |
| 123 | + sigma = 0.4 |
| 124 | + |
| 125 | + H0 = np.eye(n) |
| 126 | + |
| 127 | + s = [] |
| 128 | + y = [] |
| 129 | + |
| 130 | + k = 1 |
| 131 | + gk = get_gradient(feature, label, w0, lam) # 3X1 |
| 132 | + print gk |
| 133 | + dk = -H0 * gk |
| 134 | + # 2、迭代 |
| 135 | + while (k < maxCycle): |
| 136 | + print "iter: ", k, "\terror: ", get_error(feature, label, w0) |
| 137 | + m = 0 |
| 138 | + mk = 0 |
| 139 | + gk = get_gradient(feature, label, w0, lam) |
| 140 | + # 2.1、Armijo线搜索 |
| 141 | + while (m < 20): |
| 142 | + newf = get_result(feature, label, (w0 + rho ** m * dk), lam) |
| 143 | + oldf = get_result(feature, label, w0, lam) |
| 144 | + if newf < oldf + sigma * (rho ** m) * (gk.T * dk)[0, 0]: |
| 145 | + mk = m |
| 146 | + break |
| 147 | + m = m + 1 |
| 148 | + |
| 149 | + # 2.2、LBFGS校正 |
| 150 | + w = w0 + rho ** mk * dk |
| 151 | + |
| 152 | + # 保留m个 |
| 153 | + if k > m: |
| 154 | + s.pop(0) |
| 155 | + y.pop(0) |
| 156 | + |
| 157 | + # 保留最新的 |
| 158 | + sk = w - w0 |
| 159 | + qk = get_gradient(feature, label, w, lam) # 3X1 |
| 160 | + yk = qk - gk |
| 161 | + |
| 162 | + s.append(sk) |
| 163 | + y.append(yk) |
| 164 | + |
| 165 | + # two-loop |
| 166 | + t = len(s) |
| 167 | + a = [] |
| 168 | + for i in xrange(t): |
| 169 | + alpha = (s[t - i - 1].T * qk) / (y[t - i - 1].T * s[t - i - 1]) |
| 170 | + qk = qk - alpha[0, 0] * y[t - i - 1] |
| 171 | + a.append(alpha[0, 0]) |
| 172 | + r = H0 * qk |
| 173 | + |
| 174 | + for i in xrange(t): |
| 175 | + beta = (y[i].T * r) / (y[i].T * s[i]) |
| 176 | + r = r + s[i] * (a[t - i - 1] - beta[0, 0]) |
| 177 | + |
| 178 | + if yk.T * sk > 0: |
| 179 | + print "update OK!!!!" |
| 180 | + dk = -r |
| 181 | + |
| 182 | + k = k + 1 |
| 183 | + w0 = w |
| 184 | + return w0 |
| 185 | + |
| 186 | +def save_weights(file_name, w0): |
| 187 | + '''保存最终的结果 |
| 188 | + input: file_name(string):需要保存的文件 |
| 189 | + w0(mat):权重 |
| 190 | + ''' |
| 191 | + f_result = open("weights", "w") |
| 192 | + m, n = np.shape(w0) |
| 193 | + for i in xrange(m): |
| 194 | + w_tmp = [] |
| 195 | + for j in xrange(n): |
| 196 | + w_tmp.append(str(w0[i, j])) |
| 197 | + f_result.write("\t".join(w_tmp) + "\n") |
| 198 | + f_result.close() |
| 199 | + |
| 200 | + |
| 201 | +if __name__ == "__main__": |
| 202 | + # 1、导入数据 |
| 203 | + print "----------1.load data ------------" |
| 204 | + feature, label = load_data("data.txt") |
| 205 | + # 2、训练模型 |
| 206 | + print "----------2.training ridge_regression ------------" |
| 207 | + method = "lbfgs" # 选择的方法 |
| 208 | + if method == "bfgs": # 选择BFGS训练模型 |
| 209 | + w0 = bfgs(feature, label, 0.5, 1000) |
| 210 | + elif method == "lbfgs": # 选择L-BFGS训练模型 |
| 211 | + w0 = lbfgs(feature, label, 0.5, 10, m=10) |
| 212 | + else: # 使用最小二乘的方法 |
| 213 | + w0 = ridge_regression(feature, label, 0.5) |
| 214 | + # 3、保存最终的模型 |
| 215 | + print "----------3.save model ------------" |
| 216 | + save_weights("weights", w0) |
0 commit comments