Skip to content

Commit 40c66e9

Browse files
Create KMeanspp.py
1 parent 9bff172 commit 40c66e9

File tree

1 file changed

+78
-0
lines changed

1 file changed

+78
-0
lines changed

Chapter_10 KMeans/KMeanspp.py

Lines changed: 78 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,78 @@
1+
# coding:UTF-8
2+
'''
3+
Date:20160923
4+
@author: zhaozhiyong
5+
'''
6+
7+
import numpy as np
8+
from random import random
9+
from KMeans import load_data, kmeans, distance, save_result
10+
11+
FLOAT_MAX = 1e100 # 设置一个较大的值作为初始化的最小的距离
12+
13+
def nearest(point, cluster_centers):
14+
'''计算point和cluster_centers之间的最小距离
15+
input: point(mat):当前的样本点
16+
cluster_centers(mat):当前已经初始化的聚类中心
17+
output: min_dist(float):点point和当前的聚类中心之间的最短距离
18+
'''
19+
min_dist = FLOAT_MAX
20+
m = np.shape(cluster_centers)[0] # 当前已经初始化的聚类中心的个数
21+
for i in xrange(m):
22+
# 计算point与每个聚类中心之间的距离
23+
d = distance(point, cluster_centers[i, ])
24+
# 选择最短距离
25+
if min_dist > d:
26+
min_dist = d
27+
return min_dist
28+
29+
def get_centroids(points, k):
30+
'''KMeans++的初始化聚类中心的方法
31+
input: points(mat):样本
32+
k(int):聚类中心的个数
33+
output: cluster_centers(mat):初始化后的聚类中心
34+
'''
35+
m, n = np.shape(points)
36+
cluster_centers = np.mat(np.zeros((k , n)))
37+
# 1、随机选择一个样本点为第一个聚类中心
38+
index = np.random.randint(0, m)
39+
cluster_centers[0, ] = np.copy(points[index, ])
40+
# 2、初始化一个距离的序列
41+
d = [0.0 for _ in xrange(m)]
42+
43+
for i in xrange(1, k):
44+
sum_all = 0
45+
for j in xrange(m):
46+
# 3、对每一个样本找到最近的聚类中心点
47+
d[j] = nearest(points[j, ], cluster_centers[0:i, ])
48+
# 4、将所有的最短距离相加
49+
sum_all += d[j]
50+
# 5、取得sum_all之间的随机值
51+
sum_all *= random()
52+
# 6、获得距离最远的样本点作为聚类中心点
53+
for j, di in enumerate(d):
54+
sum_all -= di
55+
if sum_all > 0:
56+
continue
57+
cluster_centers[i] = np.copy(points[j, ])
58+
break
59+
return cluster_centers
60+
61+
if __name__ == "__main__":
62+
k = 4#聚类中心的个数
63+
file_path = "data.txt"
64+
# 1、导入数据
65+
print "---------- 1.load data ------------"
66+
data = load_data(file_path)
67+
# 2、KMeans++的聚类中心初始化方法
68+
print "---------- 2.K-Means++ generate centers ------------"
69+
centroids = get_centroids(data, k)
70+
# 3、聚类计算
71+
print "---------- 3.kmeans ------------"
72+
subCenter = kmeans(data, k, centroids)
73+
# 4、保存所属的类别文件
74+
print "---------- 4.save subCenter ------------"
75+
save_result("sub_pp", subCenter)
76+
# 5、保存聚类中心
77+
print "---------- 5.save centroids ------------"
78+
save_result("center_pp", centroids)

0 commit comments

Comments
 (0)