Skip to content

Commit 0ee004d

Browse files
committed
whitespace removals
1 parent 46c4bbb commit 0ee004d

File tree

1 file changed

+6
-6
lines changed

1 file changed

+6
-6
lines changed

doc/tutorial/text_analytics/working_with_text_data.rst

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -119,12 +119,12 @@ reference the filenames are also available::
119119

120120
Let's print the first lines of the first loaded file::
121121

122-
>>> print ("\n".join(twenty_train.data[0].split("\n")[:3]))
122+
>>> print("\n".join(twenty_train.data[0].split("\n")[:3]))
123123
From: [email protected] (Michael Collier)
124124
Subject: Converting images to HP LaserJet III?
125125
Nntp-Posting-Host: hampton
126126

127-
>>> print (twenty_train.target_names[twenty_train.target[0]])
127+
>>> print(twenty_train.target_names[twenty_train.target[0]])
128128
comp.graphics
129129

130130
Supervised learning algorithms will require a category label for each
@@ -143,7 +143,7 @@ integer id of each sample is stored in the ``target`` attribute::
143143
It is possible to get back the category names as follows::
144144

145145
>>> for t in twenty_train.target[:10]:
146-
... print (twenty_train.target_names[t])
146+
... print(twenty_train.target_names[t])
147147
...
148148
comp.graphics
149149
comp.graphics
@@ -303,7 +303,7 @@ on the transformers, since they have already been fit to the training set::
303303
>>> predicted = clf.predict(X_new_tfidf)
304304

305305
>>> for doc, category in zip(docs_new, predicted):
306-
... print ('%r => %s' % (doc, twenty_train.target_names[category]))
306+
... print('%r => %s' % (doc, twenty_train.target_names[category]))
307307
...
308308
'God is love' => soc.religion.christian
309309
'OpenGL on the GPU is fast' => comp.graphics
@@ -364,7 +364,7 @@ classifier object into our pipeline::
364364
analysis of the results::
365365

366366
>>> from sklearn import metrics
367-
>>> print (metrics.classification_report(twenty_test.target, predicted,
367+
>>> print(metrics.classification_report(twenty_test.target, predicted,
368368
... target_names=twenty_test.target_names))
369369
... # doctest: +NORMALIZE_WHITESPACE
370370
precision recall f1-score support
@@ -454,7 +454,7 @@ we can do::
454454

455455
>>> best_parameters, score, _ = max(gs_clf.grid_scores_, key=lambda x: x[1])
456456
>>> for param_name in sorted(parameters.keys()):
457-
... print ("%s: %r" % (param_name, best_parameters[param_name]))
457+
... print("%s: %r" % (param_name, best_parameters[param_name]))
458458
...
459459
clf__alpha: 0.001
460460
tfidf__use_idf: True

0 commit comments

Comments
 (0)