Skip to content

Commit caff874

Browse files
committed
DOC fix docstrings; add @hamsal to authors
1 parent 9f45e37 commit caff874

File tree

1 file changed

+22
-23
lines changed

1 file changed

+22
-23
lines changed

sklearn/multiclass.py

Lines changed: 22 additions & 23 deletions
Original file line numberDiff line numberDiff line change
@@ -29,6 +29,7 @@
2929
"""
3030

3131
# Author: Mathieu Blondel <[email protected]>
32+
# Author: Hamzeh Alsalhi <[email protected]>
3233
#
3334
# License: BSD 3 clause
3435

@@ -42,8 +43,6 @@
4243
from .preprocessing import LabelBinarizer
4344
from .metrics.pairwise import euclidean_distances
4445
from .utils import check_random_state
45-
from .utils.multiclass import type_of_target
46-
from .utils.multiclass import unique_labels
4746
from .utils.validation import _num_samples
4847
from .externals.joblib import Parallel
4948
from .externals.joblib import delayed
@@ -94,12 +93,12 @@ def fit_ovr(estimator, X, y, n_jobs=1):
9493
An estimator object implementing `fit` and one of `decision_function`
9594
or `predict_proba`.
9695
97-
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
96+
X : (sparse) array-like, shape = [n_samples, n_features]
9897
Data.
9998
100-
y : {array-like, sparse matrix}, shape = [n_samples] or
101-
[n_samples, n_classes] Multi-class targets. An indicator matrix
102-
turns on multilabel classification.
99+
y : (sparse) array-like, shape = [n_samples] or [n_samples, n_classes]
100+
Multi-class targets. An indicator matrix turns on multilabel
101+
classification.
103102
104103
Returns
105104
-------
@@ -116,7 +115,7 @@ def fit_ovr(estimator, X, y, n_jobs=1):
116115
columns = (col.toarray().ravel() for col in Y.T)
117116
# In cases where individual estimators are very fast to train setting
118117
# n_jobs > 1 in can results in slower performance due to the overhead
119-
# of spawning threads.
118+
# of spawning threads. See joblib issue #112.
120119
estimators = Parallel(n_jobs=n_jobs)(delayed(_fit_binary)
121120
(estimator,
122121
X,
@@ -140,13 +139,13 @@ def predict_ovr(estimators, label_binarizer, X):
140139
multiclass labels to binary labels and vice-versa. fit_ovr supplies
141140
this object as part of its output.
142141
143-
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
142+
X : (sparse) array-like, shape = [n_samples, n_features]
144143
Data.
145144
146145
Returns
147146
-------
148-
y : {array-like, sparse matrix}, shape = [n_samples] or
149-
[n_samples, n_classes]. Predicted multi-class targets.
147+
y : (sparse) array-like, shape = [n_samples] or [n_samples, n_classes].
148+
Predicted multi-class targets.
150149
"""
151150
e_types = set([type(e) for e in estimators if not
152151
isinstance(e, _ConstantPredictor)])
@@ -264,12 +263,12 @@ def fit(self, X, y):
264263
265264
Parameters
266265
----------
267-
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
266+
X : (sparse) array-like, shape = [n_samples, n_features]
268267
Data.
269268
270-
y : {array-like, sparse matrix}, shape = [n_samples] or
271-
[n_samples, n_classes] Multi-class targets. An indicator matrix
272-
turns on multilabel classification.
269+
y : (sparse) array-like, shape = [n_samples] or [n_samples, n_classes]
270+
Multi-class targets. An indicator matrix turns on multilabel
271+
classification.
273272
274273
Returns
275274
-------
@@ -288,13 +287,13 @@ def predict(self, X):
288287
289288
Parameters
290289
----------
291-
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
290+
X : (sparse) array-like, shape = [n_samples, n_features]
292291
Data.
293292
294293
Returns
295294
-------
296-
y : {array-like, sparse matrix}, shape = [n_samples] or
297-
[n_samples, n_classes]. Predicted multi-class targets.
295+
y : (sparse) array-like, shape = [n_samples] or [n_samples, n_classes].
296+
Predicted multi-class targets.
298297
"""
299298
self._check_is_fitted()
300299

@@ -319,7 +318,7 @@ def predict_proba(self, X):
319318
320319
Returns
321320
-------
322-
T : {array-like, sparse matrix}, shape = [n_samples, n_classes]
321+
T : (sparse) array-like, shape = [n_samples, n_classes]
323322
Returns the probability of the sample for each class in the model,
324323
where classes are ordered as they are in `self.classes_`.
325324
"""
@@ -474,7 +473,7 @@ def fit(self, X, y):
474473
475474
Parameters
476475
----------
477-
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
476+
X : (sparse) array-like, shape = [n_samples, n_features]
478477
Data.
479478
480479
y : numpy array of shape [n_samples]
@@ -493,7 +492,7 @@ def predict(self, X):
493492
494493
Parameters
495494
----------
496-
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
495+
X : (sparse) array-like, shape = [n_samples, n_features]
497496
Data.
498497
499498
Returns
@@ -533,7 +532,7 @@ def fit_ecoc(estimator, X, y, code_size=1.5, random_state=None, n_jobs=1):
533532
classes : numpy array of shape [n_classes]
534533
Array containing labels.
535534
536-
`code_book_`: numpy array of shape [n_classes, code_size]
535+
`code_book_` : numpy array of shape [n_classes, code_size]
537536
Binary array containing the code of each class.
538537
"""
539538
_check_estimator(estimator)
@@ -650,7 +649,7 @@ def fit(self, X, y):
650649
651650
Parameters
652651
----------
653-
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
652+
X : (sparse) array-like, shape = [n_samples, n_features]
654653
Data.
655654
656655
y : numpy array of shape [n_samples]
@@ -670,7 +669,7 @@ def predict(self, X):
670669
671670
Parameters
672671
----------
673-
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
672+
X : (sparse) array-like, shape = [n_samples, n_features]
674673
Data.
675674
676675
Returns

0 commit comments

Comments
 (0)