|
12 | 12 | #include "decode.h" |
13 | 13 | #include <opencv2/opencv.hpp> |
14 | 14 |
|
15 | | -#define USE_FP16 // comment out this if want to use FP32 |
| 15 | +//#define USE_FP16 // comment out this if want to use FP32 |
16 | 16 | #define DEVICE 0 // GPU id |
17 | 17 |
|
18 | 18 | // stuff we know about the network and the input/output blobs |
@@ -101,6 +101,7 @@ void nms(std::vector<decodeplugin::Detection>& res, float *output, float nms_thr |
101 | 101 | dets.push_back(det); |
102 | 102 | } |
103 | 103 | std::sort(dets.begin(), dets.end(), cmp); |
| 104 | + if (dets.size() > 5000) dets.erase(dets.begin() + 5000, dets.end()); |
104 | 105 | for (size_t m = 0; m < dets.size(); ++m) { |
105 | 106 | auto& item = dets[m]; |
106 | 107 | res.push_back(item); |
@@ -497,7 +498,7 @@ int main(int argc, char** argv) { |
497 | 498 | } |
498 | 499 |
|
499 | 500 | // prepare input data --------------------------- |
500 | | - float data[3 * INPUT_H * INPUT_W]; |
| 501 | + static float data[3 * INPUT_H * INPUT_W]; |
501 | 502 | //for (int i = 0; i < 3 * INPUT_H * INPUT_W; i++) |
502 | 503 | // data[i] = 1.0; |
503 | 504 |
|
@@ -536,7 +537,7 @@ int main(int argc, char** argv) { |
536 | 537 | if (res[j].class_confidence < 0.1) continue; |
537 | 538 | cv::Rect r = get_rect_adapt_landmark(img, res[j].bbox, res[j].landmark); |
538 | 539 | cv::rectangle(img, r, cv::Scalar(0x27, 0xC1, 0x36), 2); |
539 | | - cv::putText(img, std::to_string((int)(res[j].class_confidence * 100)) + "%", cv::Point(r.x, r.y - 1), cv::FONT_HERSHEY_PLAIN, 1.2, cv::Scalar(0xFF, 0xFF, 0xFF), 1); |
| 540 | + //cv::putText(img, std::to_string((int)(res[j].class_confidence * 100)) + "%", cv::Point(r.x, r.y - 1), cv::FONT_HERSHEY_PLAIN, 1.2, cv::Scalar(0xFF, 0xFF, 0xFF), 1); |
540 | 541 | for (int k = 0; k < 10; k += 2) { |
541 | 542 | cv::circle(img, cv::Point(res[j].landmark[k], res[j].landmark[k + 1]), 1, cv::Scalar(255 * (k > 2), 255 * (k > 0 && k < 8), 255 * (k < 6)), 4); |
542 | 543 | } |
|
0 commit comments