|
| 1 | +# Chest Image Dataset for Pneumothorax Segmentation |
| 2 | + |
| 3 | +## Description |
| 4 | + |
| 5 | +This project supports **`Chest Image Dataset for Pneumothorax Segmentation`**, which can be downloaded from [here](https://tianchi.aliyun.com/dataset/83075). |
| 6 | + |
| 7 | +### Dataset Overview |
| 8 | + |
| 9 | +Pneumothorax can be caused by a blunt chest injury, damage from underlying lung disease, or most horrifying—it may occur for no obvious reason at all. On some occasions, a collapsed lung can be a life-threatening event. |
| 10 | +Pneumothorax is usually diagnosed by a radiologist on a chest x-ray, and can sometimes be very difficult to confirm. An accurate AI algorithm to detect pneumothorax would be useful in a lot of clinical scenarios. AI could be used to triage chest radiographs for priority interpretation, or to provide a more confident diagnosis for non-radiologists. |
| 11 | + |
| 12 | +The dataset is provided by the Society for Imaging Informatics in Medicine(SIIM), American College of Radiology (ACR),Society of Thoracic Radiology (STR) and MD.ai. You can develop a model to classify (and if present, segment) pneumothorax from a set of chest radiographic images. If successful, you could aid in the early recognition of pneumothoraces and save lives. |
| 13 | + |
| 14 | +### Original Statistic Information |
| 15 | + |
| 16 | +| Dataset name | Anatomical region | Task type | Modality | Num. Classes | Train/Val/Test Images | Train/Val/Test Labeled | Release Date | License | |
| 17 | +| --------------------------------------------------------------------- | ----------------- | ------------ | -------- | ------------ | --------------------- | ---------------------- | ------------ | ------------------------------------------------------------------ | |
| 18 | +| [pneumothorax segmentation](https://tianchi.aliyun.com/dataset/83075) | thorax | segmentation | x_ray | 2 | 12089/-/3205 | yes/-/no | - | [CC-BY-SA-NC 4.0](https://creativecommons.org/licenses/by-sa/4.0/) | |
| 19 | + |
| 20 | +| Class Name | Num. Train | Pct. Train | Num. Val | Pct. Val | Num. Test | Pct. Test | |
| 21 | +| :---------------: | :--------: | :--------: | :------: | :------: | :-------: | :-------: | |
| 22 | +| normal | 12089 | 99.75 | - | - | - | - | |
| 23 | +| pneumothorax area | 2669 | 0.25 | - | - | - | - | |
| 24 | + |
| 25 | +Note: |
| 26 | + |
| 27 | +- `Pct` means percentage of pixels in this category in all pixels. |
| 28 | + |
| 29 | +### Visualization |
| 30 | + |
| 31 | + |
| 32 | + |
| 33 | +### Prerequisites |
| 34 | + |
| 35 | +- Python v3.8 |
| 36 | +- PyTorch v1.10.0 |
| 37 | +- [MIM](https://github.com/open-mmlab/mim) v0.3.4 |
| 38 | +- [MMCV](https://github.com/open-mmlab/mmcv) v2.0.0rc4 |
| 39 | +- [MMEngine](https://github.com/open-mmlab/mmengine) v0.2.0 or higher |
| 40 | +- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation) v1.0.0rc5 |
| 41 | + |
| 42 | +All the commands below rely on the correct configuration of `PYTHONPATH`, which should point to the project's directory so that Python can locate the module files. In `chest_image_pneum/` root directory, run the following line to add the current directory to `PYTHONPATH`: |
| 43 | + |
| 44 | +```shell |
| 45 | +export PYTHONPATH=`pwd`:$PYTHONPATH |
| 46 | +``` |
| 47 | + |
| 48 | +### Dataset preparing |
| 49 | + |
| 50 | +- download dataset from [here](https://tianchi.aliyun.com/dataset/83075) and decompress data to path `'data/'`. |
| 51 | +- run script `"python tools/prepare_dataset.py"` to format data and change folder structure as below. |
| 52 | +- run script `"python ../../tools/split_seg_dataset.py"` to split dataset and generate `train.txt`, `val.txt` and `test.txt`. If the label of official validation set and test set can't be obtained, we generate `train.txt` and `val.txt` from the training set randomly. |
| 53 | + |
| 54 | +```none |
| 55 | + mmsegmentation |
| 56 | + ├── mmseg |
| 57 | + ├── projects |
| 58 | + │ ├── medical |
| 59 | + │ │ ├── 2d_image |
| 60 | + │ │ │ ├── x_ray |
| 61 | + │ │ │ │ ├── chest_image_pneum |
| 62 | + │ │ │ │ │ ├── configs |
| 63 | + │ │ │ │ │ ├── datasets |
| 64 | + │ │ │ │ │ ├── tools |
| 65 | + │ │ │ │ │ ├── data |
| 66 | + │ │ │ │ │ │ ├── train.txt |
| 67 | + │ │ │ │ │ │ ├── test.txt |
| 68 | + │ │ │ │ │ │ ├── images |
| 69 | + │ │ │ │ │ │ │ ├── train |
| 70 | + │ │ │ │ | │ │ │ ├── xxx.png |
| 71 | + │ │ │ │ | │ │ │ ├── ... |
| 72 | + │ │ │ │ | │ │ │ └── xxx.png |
| 73 | + │ │ │ │ │ │ ├── masks |
| 74 | + │ │ │ │ │ │ │ ├── train |
| 75 | + │ │ │ │ | │ │ │ ├── xxx.png |
| 76 | + │ │ │ │ | │ │ │ ├── ... |
| 77 | + │ │ │ │ | │ │ │ └── xxx.png |
| 78 | +``` |
| 79 | + |
| 80 | +### Divided Dataset Information |
| 81 | + |
| 82 | +***Note: The table information below is divided by ourselves.*** |
| 83 | + |
| 84 | +| Class Name | Num. Train | Pct. Train | Num. Val | Pct. Val | Num. Test | Pct. Test | |
| 85 | +| :---------------: | :--------: | :--------: | :------: | :------: | :-------: | :-------: | |
| 86 | +| normal | 9637 | 99.75 | 2410 | 99.74 | - | - | |
| 87 | +| pneumothorax area | 2137 | 0.25 | 532 | 0.26 | - | - | |
| 88 | + |
| 89 | +### Training commands |
| 90 | + |
| 91 | +Train models on a single server with one GPU. |
| 92 | + |
| 93 | +```shell |
| 94 | +mim train mmseg ./configs/${CONFIG_FILE} |
| 95 | +``` |
| 96 | + |
| 97 | +### Testing commands |
| 98 | + |
| 99 | +Test models on a single server with one GPU. |
| 100 | + |
| 101 | +```shell |
| 102 | +mim test mmseg ./configs/${CONFIG_FILE} --checkpoint ${CHECKPOINT_PATH} |
| 103 | +``` |
| 104 | + |
| 105 | +<!-- List the results as usually done in other model's README. [Example](https://github.com/open-mmlab/mmsegmentation/tree/dev-1.x/configs/fcn#results-and-models) |
| 106 | +
|
| 107 | +You should claim whether this is based on the pre-trained weights, which are converted from the official release; or it's a reproduced result obtained from retraining the model in this project. --> |
| 108 | + |
| 109 | +## Results |
| 110 | + |
| 111 | +### Bactteria detection with darkfield microscopy |
| 112 | + |
| 113 | +| Method | Backbone | Crop Size | lr | mIoU | mDice | config | download | |
| 114 | +| :-------------: | :------: | :-------: | :----: | :--: | :---: | :------------------------------------------------------------------------------------: | :----------------------: | |
| 115 | +| fcn_unet_s5-d16 | unet | 512x512 | 0.01 | - | - | [config](./configs/fcn-unet-s5-d16_unet_1xb16-0.01-20k_chest-image-pneum-512x512.py) | [model](<>) \| [log](<>) | |
| 116 | +| fcn_unet_s5-d16 | unet | 512x512 | 0.001 | - | - | [config](./configs/fcn-unet-s5-d16_unet_1xb16-0.001-20k_chest-image-pneum-512x512.py) | [model](<>) \| [log](<>) | |
| 117 | +| fcn_unet_s5-d16 | unet | 512x512 | 0.0001 | - | - | [config](./configs/fcn-unet-s5-d16_unet_1xb16-0.0001-20k_chest-image-pneum-512x512.py) | [model](<>) \| [log](<>) | |
| 118 | + |
| 119 | +## Checklist |
| 120 | + |
| 121 | +- [x] Milestone 1: PR-ready, and acceptable to be one of the `projects/`. |
| 122 | + |
| 123 | + - [x] Finish the code |
| 124 | + |
| 125 | + - [x] Basic docstrings & proper citation |
| 126 | + |
| 127 | + - [x] Test-time correctness |
| 128 | + |
| 129 | + - [x] A full README |
| 130 | + |
| 131 | +- [x] Milestone 2: Indicates a successful model implementation. |
| 132 | + |
| 133 | + - [x] Training-time correctness |
| 134 | + |
| 135 | +- [ ] Milestone 3: Good to be a part of our core package! |
| 136 | + |
| 137 | + - [ ] Type hints and docstrings |
| 138 | + |
| 139 | + - [ ] Unit tests |
| 140 | + |
| 141 | + - [ ] Code polishing |
| 142 | + |
| 143 | + - [ ] Metafile.yml |
| 144 | + |
| 145 | +- [ ] Move your modules into the core package following the codebase's file hierarchy structure. |
| 146 | + |
| 147 | +- [ ] Refactor your modules into the core package following the codebase's file hierarchy structure. |
0 commit comments