Skip to content

Commit 97b5592

Browse files
committed
update
1 parent 08a2c0f commit 97b5592

File tree

3 files changed

+33
-33
lines changed

3 files changed

+33
-33
lines changed
11.5 MB
Binary file not shown.

_papers/QA-视觉问答-A-综述.md

Lines changed: 33 additions & 33 deletions
Original file line numberDiff line numberDiff line change
@@ -10,39 +10,39 @@ Index
1010
<!-- TOC -->
1111

1212
- [VQA 简述](#vqa-简述)
13-
- [VQA 与其他图像任务](#vqa-与其他图像任务)
14-
- [基于对象检测的任务](#基于对象检测的任务)
15-
- [图像描述任务](#图像描述任务)
16-
- [DenseCap](#densecap)
17-
- [VQA 中的数据集](#vqa-中的数据集)
18-
- [DAQUAR](#daquar)
19-
- [COCO-QA](#coco-qa)
20-
- [VQA Dataset](#vqa-dataset)
21-
- [FM-IQA](#fm-iqa)
22-
- [Visual Genome](#visual-genome)
23-
- [Visual7W](#visual7w)
24-
- [SHAPES](#shapes)
25-
- [VQA 的评价方法 TODO](#vqa-的评价方法-todo)
13+
- [VQA 与其他图像任务](#vqa-与其他图像任务)
14+
- [基于对象检测的任务](#基于对象检测的任务)
15+
- [图像描述任务](#图像描述任务)
16+
- [DenseCap](#densecap)
17+
- [VQA 中的数据集](#vqa-中的数据集)
18+
- [DAQUAR](#daquar)
19+
- [COCO-QA](#coco-qa)
20+
- [VQA Dataset](#vqa-dataset)
21+
- [FM-IQA](#fm-iqa)
22+
- [Visual Genome](#visual-genome)
23+
- [Visual7W](#visual7w)
24+
- [SHAPES](#shapes)
25+
- [VQA 的评价方法 TODO](#vqa-的评价方法-todo)
2626
- [主流模型与方法](#主流模型与方法)
27-
- [基线模型](#基线模型)
28-
- [分类模型](#分类模型)
29-
- [生成模型](#生成模型)
30-
- [贝叶斯模型](#贝叶斯模型)
31-
- [基于 Attention 的模型](#基于-attention-的模型)
32-
- [基于 Edge Boxes 的方法](#基于-edge-boxes-的方法)
33-
- [基于 Uniform Grid 的方法](#基于-uniform-grid-的方法)
34-
- [[49] Stacked Attention Networks for Image Question Answering(SAN)](#49-stacked-attention-networks-for-image-question-answeringsan)
35-
- [[48] Ask, Attend and Answer: Exploring Question-Guided Spatial Attention for Visual Question Answering](#48-ask-attend-and-answer-exploring-question-guided-spatial-attention-for-visual-question-answering)
36-
- [[52] Dynamic memory networks for visual and textual question answering](#52-dynamic-memory-networks-for-visual-and-textual-question-answering)
37-
- [[54] Hierarchical Question-Image Co-Attention for Visual Question Answering](#54-hierarchical-question-image-co-attention-for-visual-question-answering)
38-
- [[56] Dual attention networks for multimodal reasoning and matching](#56-dual-attention-networks-for-multimodal-reasoning-and-matching)
39-
- [基于双线性池化的模型](#基于双线性池化的模型)
40-
- [[46] Multimodal compact bilinear pooling for visual question answering and visual grounding](#46-multimodal-compact-bilinear-pooling-for-visual-question-answering-and-visual-grounding)
41-
- [[57] Hadamard Product for Low-rank Bilinear Pooling](#57-hadamard-product-for-low-rank-bilinear-pooling)
42-
- [组合模型](#组合模型)
43-
- [[44] Deep Compositional Question Answering with Neural Module Networks](#44-deep-compositional-question-answering-with-neural-module-networks)
44-
- [[55] Training recurrent answering units with joint loss minimization for VQA](#55-training-recurrent-answering-units-with-joint-loss-minimization-for-vqa)
45-
- [其他模型 TODO](#其他模型-todo)
27+
- [基线模型](#基线模型)
28+
- [分类模型](#分类模型)
29+
- [生成模型](#生成模型)
30+
- [贝叶斯模型](#贝叶斯模型)
31+
- [基于 Attention 的模型](#基于-attention-的模型)
32+
- [基于 Edge Boxes 的方法](#基于-edge-boxes-的方法)
33+
- [基于 Uniform Grid 的方法](#基于-uniform-grid-的方法)
34+
- [[49] Stacked Attention Networks for Image Question Answering(SAN)](#49-stacked-attention-networks-for-image-question-answeringsan)
35+
- [[48] Ask, Attend and Answer: Exploring Question-Guided Spatial Attention for Visual Question Answering](#48-ask-attend-and-answer-exploring-question-guided-spatial-attention-for-visual-question-answering)
36+
- [[52] Dynamic memory networks for visual and textual question answering](#52-dynamic-memory-networks-for-visual-and-textual-question-answering)
37+
- [[54] Hierarchical Question-Image Co-Attention for Visual Question Answering](#54-hierarchical-question-image-co-attention-for-visual-question-answering)
38+
- [[56] Dual attention networks for multimodal reasoning and matching](#56-dual-attention-networks-for-multimodal-reasoning-and-matching)
39+
- [基于双线性池化的模型](#基于双线性池化的模型)
40+
- [[46] Multimodal compact bilinear pooling for visual question answering and visual grounding](#46-multimodal-compact-bilinear-pooling-for-visual-question-answering-and-visual-grounding)
41+
- [[57] Hadamard Product for Low-rank Bilinear Pooling](#57-hadamard-product-for-low-rank-bilinear-pooling)
42+
- [组合模型](#组合模型)
43+
- [[44] Deep Compositional Question Answering with Neural Module Networks](#44-deep-compositional-question-answering-with-neural-module-networks)
44+
- [[55] Training recurrent answering units with joint loss minimization for VQA](#55-training-recurrent-answering-units-with-joint-loss-minimization-for-vqa)
45+
- [其他模型 TODO](#其他模型-todo)
4646
- [参考文献](#参考文献)
4747

4848
<!-- /TOC -->
@@ -363,7 +363,7 @@ Index
363363
> 这个过程实际上跟**卷积**本身很像。
364364
<div align="center"><img src="../_assets/TIM截图20180911153132.png" height="" /></div>
365365
366-
**Attention 的作用**
366+
<!-- **Attention 的作用** -->
367367

368368
### 基于 Edge Boxes 的方法
369369
> [63, 51]

_papers/pdf/[2018].BERT.pdf

578 KB
Binary file not shown.

0 commit comments

Comments
 (0)