|
| 1 | + |
| 2 | +Task description |
| 3 | +A non-empty zero-indexed array A consisting of N integers is given. |
| 4 | + |
| 5 | +The leader of this array is the value that occurs in more than half of the elements of A. |
| 6 | + |
| 7 | +An equi leader is an index S such that 0 ≤ S < N − 1 and two sequences A[0], A[1], ..., A[S] and A[S + 1], A[S + 2], ..., A[N − 1] have leaders of the same value. |
| 8 | + |
| 9 | +For example, given array A such that: |
| 10 | + |
| 11 | +``` |
| 12 | + A[0] = 4 |
| 13 | + A[1] = 3 |
| 14 | + A[2] = 4 |
| 15 | + A[3] = 4 |
| 16 | + A[4] = 4 |
| 17 | + A[5] = 2 |
| 18 | +``` |
| 19 | +we can find two equi leaders: |
| 20 | + |
| 21 | +* 0, because sequences: (4) and (3, 4, 4, 4, 2) have the same leader, whose value is 4. |
| 22 | +* 2, because sequences: (4, 3, 4) and (4, 4, 2) have the same leader, whose value is 4. |
| 23 | + |
| 24 | +The goal is to count the number of equi leaders. |
| 25 | + |
| 26 | +Write a function: |
| 27 | + |
| 28 | +``` |
| 29 | +function solution(A); |
| 30 | +``` |
| 31 | + |
| 32 | +that, given a non-empty zero-indexed array A consisting of N integers, returns the number of equi leaders. |
| 33 | + |
| 34 | +For example, given: |
| 35 | + |
| 36 | +``` |
| 37 | + A[0] = 4 |
| 38 | + A[1] = 3 |
| 39 | + A[2] = 4 |
| 40 | + A[3] = 4 |
| 41 | + A[4] = 4 |
| 42 | + A[5] = 2 |
| 43 | +``` |
| 44 | +the function should return 2, as explained above. |
| 45 | + |
| 46 | +Assume that: |
| 47 | + |
| 48 | +* N is an integer within the range [1..100,000]; |
| 49 | +* each element of array A is an integer within the range [−1,000,000,000..1,000,000,000]. |
| 50 | + |
| 51 | +Complexity: |
| 52 | + |
| 53 | +* expected worst-case time complexity is O(N); |
| 54 | +* expected worst-case space complexity is O(N), beyond input storage (not counting the storage required for input arguments). |
| 55 | +Elements of input arrays can be modified. |
| 56 | + |
| 57 | +```javascript |
| 58 | +function solution(A) { |
| 59 | + var pos = 0; |
| 60 | + var count = 0; |
| 61 | + |
| 62 | + for (var i = 0; i < A.length; i++) { |
| 63 | + if (A[pos] == A[i]) { |
| 64 | + count++; |
| 65 | + } else { |
| 66 | + count--; |
| 67 | + if (count == 0) { |
| 68 | + pos = i; |
| 69 | + count++; |
| 70 | + } |
| 71 | + } |
| 72 | + } |
| 73 | + |
| 74 | + var ret = 0; |
| 75 | + var cand = A[pos]; |
| 76 | + |
| 77 | + var E = []; |
| 78 | + var N = []; |
| 79 | + |
| 80 | + var ec = 0; |
| 81 | + var nc = 0; |
| 82 | + for (var i = 0; i < A.length; i++) { |
| 83 | + if (A[i] == cand) { |
| 84 | + ec++; |
| 85 | + } else { |
| 86 | + nc++; |
| 87 | + } |
| 88 | + E[i] = ec; |
| 89 | + N[i] = nc; |
| 90 | + } |
| 91 | + |
| 92 | + for (var i = 0; i < A.length; i++) { |
| 93 | + if (E[i] > N[i] && ((nc - N[i]) < (ec - E[i]))) { |
| 94 | + ret++; |
| 95 | + } |
| 96 | + } |
| 97 | + |
| 98 | + return ret; |
| 99 | +} |
| 100 | +``` |
0 commit comments