|
23 | 23 | }, |
24 | 24 | { |
25 | 25 | "cell_type": "code", |
26 | | - "execution_count": 19, |
27 | | - "metadata": { |
28 | | - "collapsed": true |
29 | | - }, |
| 26 | + "execution_count": null, |
| 27 | + "metadata": {}, |
30 | 28 | "outputs": [], |
31 | 29 | "source": [ |
32 | 30 | "import numpy as np\n", |
|
51 | 49 | }, |
52 | 50 | { |
53 | 51 | "cell_type": "code", |
54 | | - "execution_count": 20, |
55 | | - "metadata": { |
56 | | - "collapsed": true |
57 | | - }, |
| 52 | + "execution_count": null, |
| 53 | + "metadata": {}, |
58 | 54 | "outputs": [], |
59 | 55 | "source": [ |
60 | 56 | "N = 100 # size of toy data\n", |
|
78 | 74 | }, |
79 | 75 | { |
80 | 76 | "cell_type": "code", |
81 | | - "execution_count": 21, |
82 | | - "metadata": { |
83 | | - "collapsed": true |
84 | | - }, |
| 77 | + "execution_count": null, |
| 78 | + "metadata": {}, |
85 | 79 | "outputs": [], |
86 | 80 | "source": [ |
87 | 81 | "class RegressionModel(nn.Module):\n", |
|
105 | 99 | }, |
106 | 100 | { |
107 | 101 | "cell_type": "code", |
108 | | - "execution_count": 23, |
| 102 | + "execution_count": null, |
109 | 103 | "metadata": {}, |
110 | | - "outputs": [ |
111 | | - { |
112 | | - "name": "stdout", |
113 | | - "output_type": "stream", |
114 | | - "text": [ |
115 | | - "105.713066101\n", |
116 | | - "102.354705811\n", |
117 | | - "102.354682922\n", |
118 | | - "102.354660034\n", |
119 | | - "102.354660034\n", |
120 | | - "102.354660034\n", |
121 | | - "102.354660034\n", |
122 | | - "102.354660034\n", |
123 | | - "102.354660034\n", |
124 | | - "102.354660034\n", |
125 | | - "Parameters: [('linear.weight', Parameter containing:\n", |
126 | | - " 2.9949\n", |
127 | | - "[torch.FloatTensor of size 1x1]\n", |
128 | | - "), ('linear.bias', Parameter containing:\n", |
129 | | - " 1.0565\n", |
130 | | - "[torch.FloatTensor of size 1]\n", |
131 | | - ")]\n" |
132 | | - ] |
133 | | - } |
134 | | - ], |
| 104 | + "outputs": [], |
135 | 105 | "source": [ |
136 | 106 | "loss_fn = torch.nn.MSELoss(size_average=False)\n", |
137 | 107 | "optim = torch.optim.Adam(regression_model.parameters(), lr=0.01)\n", |
|
175 | 145 | }, |
176 | 146 | { |
177 | 147 | "cell_type": "code", |
178 | | - "execution_count": 24, |
179 | | - "metadata": { |
180 | | - "collapsed": true |
181 | | - }, |
| 148 | + "execution_count": null, |
| 149 | + "metadata": {}, |
182 | 150 | "outputs": [], |
183 | 151 | "source": [ |
184 | 152 | "mu = Variable(torch.zeros(1, 1))\n", |
|
203 | 171 | }, |
204 | 172 | { |
205 | 173 | "cell_type": "code", |
206 | | - "execution_count": 25, |
207 | | - "metadata": { |
208 | | - "collapsed": true |
209 | | - }, |
| 174 | + "execution_count": null, |
| 175 | + "metadata": {}, |
210 | 176 | "outputs": [], |
211 | 177 | "source": [ |
212 | 178 | "def model(data):\n", |
|
256 | 222 | }, |
257 | 223 | { |
258 | 224 | "cell_type": "code", |
259 | | - "execution_count": 26, |
| 225 | + "execution_count": null, |
260 | 226 | "metadata": {}, |
261 | | - "outputs": [ |
262 | | - { |
263 | | - "name": "stdout", |
264 | | - "output_type": "stream", |
265 | | - "text": [ |
266 | | - "epoch avg loss 1.53375732422\n", |
267 | | - "epoch avg loss 1.55264312744\n", |
268 | | - "epoch avg loss 1.54637115479\n", |
269 | | - "epoch avg loss 1.56145004272\n", |
270 | | - "epoch avg loss 1.55594955444\n", |
271 | | - "epoch avg loss 1.55865844727\n", |
272 | | - "epoch avg loss 1.55234939575\n", |
273 | | - "epoch avg loss 1.55432601929\n", |
274 | | - "epoch avg loss 1.55954589844\n", |
275 | | - "epoch avg loss 1.55867294312\n" |
276 | | - ] |
277 | | - } |
278 | | - ], |
| 227 | + "outputs": [], |
279 | 228 | "source": [ |
280 | 229 | "optim = Adam({\"lr\": 0.01})\n", |
281 | 230 | "svi = SVI(model, guide, optim, loss=\"ELBO\")\n", |
|
303 | 252 | }, |
304 | 253 | { |
305 | 254 | "cell_type": "code", |
306 | | - "execution_count": 27, |
| 255 | + "execution_count": null, |
307 | 256 | "metadata": {}, |
308 | | - "outputs": [ |
309 | | - { |
310 | | - "name": "stdout", |
311 | | - "output_type": "stream", |
312 | | - "text": [ |
313 | | - "{'guide_log_sigma_bias': Variable containing:\n", |
314 | | - "-2.2687\n", |
315 | | - "[torch.FloatTensor of size 1]\n", |
316 | | - ", 'guide_log_sigma_weight': Variable containing:\n", |
317 | | - "-3.5816\n", |
318 | | - "[torch.FloatTensor of size 1x1]\n", |
319 | | - ", 'guide_mean_weight': Variable containing:\n", |
320 | | - " 2.9820\n", |
321 | | - "[torch.FloatTensor of size 1x1]\n", |
322 | | - ", 'guide_mean_bias': Variable containing:\n", |
323 | | - " 1.2036\n", |
324 | | - "[torch.FloatTensor of size 1]\n", |
325 | | - "}\n" |
326 | | - ] |
327 | | - } |
328 | | - ], |
| 257 | + "outputs": [], |
329 | 258 | "source": [ |
330 | 259 | "print pyro.get_param_store()._params" |
331 | 260 | ] |
|
346 | 275 | }, |
347 | 276 | { |
348 | 277 | "cell_type": "code", |
349 | | - "execution_count": 28, |
| 278 | + "execution_count": null, |
350 | 279 | "metadata": {}, |
351 | | - "outputs": [ |
352 | | - { |
353 | | - "name": "stdout", |
354 | | - "output_type": "stream", |
355 | | - "text": [ |
356 | | - "Variable containing:\n", |
357 | | - "1.00000e-04 *\n", |
358 | | - " 5.8031\n", |
359 | | - "[torch.FloatTensor of size 1]\n", |
360 | | - "\n" |
361 | | - ] |
362 | | - } |
363 | | - ], |
| 280 | + "outputs": [], |
364 | 281 | "source": [ |
365 | 282 | "X = np.linspace(8, 12, num=20)\n", |
366 | 283 | "y = 3 * X + 1\n", |
|
0 commit comments