Skip to content

Commit aad8dd2

Browse files
authored
Update Links (tusen-ai#239)
* Update INSTALL.md * Update README.md * Update README.md * Update DATASET.md
1 parent dd4eb15 commit aad8dd2

File tree

4 files changed

+9
-9
lines changed

4 files changed

+9
-9
lines changed

doc/DATASET.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -57,7 +57,7 @@ pushd data/src
5757

5858
# download and extract clipart.zip
5959
# courtesy to "Towards Universal Object Detection by Domain Attention"
60-
wget http://simpledet.alarge.space:1234/?/clipart.zip -O clipart.zip
60+
wget https://1dv.alarge.space/clipart.zip -O clipart.zip
6161
unzip clipart.zip
6262
popd
6363

doc/INSTALL.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1,11 +1,11 @@
11
## Setup Locally with Pre-built Wheel
22
We provide pre-built wheel for python >= 3.4, Ubuntu >= 14.04 or CentOS >=7. The wheels are staticly linked so no dependency other than CUDA is required.
33

4-
[Downdload wheel for CUDA-9.0](http://simpledet.alarge.space:1234/mxnet_cu90-1.6.0b20190820-py2.py3-none-manylinux1_x86_64.whl)
4+
[Downdload wheel for CUDA-9.0](https://1dv.alarge.space/mxnet_cu90-1.6.0b20190820-py2.py3-none-manylinux1_x86_64.whl)
55

6-
[Downdload wheel for CUDA-10.0](http://simpledet.alarge.space:1234/mxnet_cu100-1.6.0b20190820-py2.py3-none-manylinux1_x86_64.whl)
6+
[Downdload wheel for CUDA-10.0](https://1dv.alarge.space/mxnet_cu100-1.6.0b20190820-py2.py3-none-manylinux1_x86_64.whl)
77

8-
[Downdload wheel for CUDA-10.1](http://simpledet.alarge.space:1234/mxnet_cu101-1.6.0b20190820-py2.py3-none-manylinux1_x86_64.whl)
8+
[Downdload wheel for CUDA-10.1](https://1dv.alarge.space/mxnet_cu101-1.6.0b20190820-py2.py3-none-manylinux1_x86_64.whl)
99

1010
Install the wheel as
1111
```bash
@@ -53,7 +53,7 @@ sudo make install
5353

5454
#### Download singularity image for SimpleDet
5555
```bash
56-
wget http://simpledet.alarge.space:1234/simpledet.img
56+
wget https://1dv.alarge.space/simpledet.img
5757
```
5858

5959
#### Invoke simpledet shell

models/NASFPN/README.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -23,9 +23,9 @@ All AP results are reported on test-dev of the [COCO dataset](http://cocodataset
2323
|-----|-----|--------|----|--------------|---|---------|----|---------|-----------|---------------|----|
2424
|RetinaNet|640|R50v1b-FPN|1@256|25 epoch|8X 1080Ti|8|yes|6.6G|85 img/s|37.4|[model](https://simpledet-model.oss-cn-beijing.aliyuncs.com/retina_r50v1b_fpn_640640_25epoch.zip)|
2525
|NAS-FPN|640|R50v1b-FPN|7@256|25 epoch|8X 1080Ti|8|yes|7.8G|66 img/s|40.1|[model](https://simpledet-model.oss-cn-beijing.aliyuncs.com/retina_r50v1b_nasfpn_640640_25epoch.zip)|
26-
|NAS-FPN|1024|R50v1b-FPN|7@256|25 epoch|8X 1080Ti|4|yes|9.1G|17 img/s|44.2|[model](http://simpledet.alarge.space:1234/?/retina_r50v1b_nasfpn_1024_7%40256_25epoch.zip)|
27-
|NAS-FPN|1280|R50v1b-FPN|7@384|25 epoch|8X 1080Ti|2|yes|8.9G|10 img/s|45.3|[model](http://simpledet.alarge.space:1234/?/retina_r50v1b_nasfpn_1280_7%40384_25epoch.zip)|
28-
|TD-BU*|1280|R50v1b-FPN|3@384|25 epoch|8X 1080Ti|3|yes|10.5G|12 img/s|44.7|[model](http://simpledet.alarge.space:1234/?/retina_r50v1b_tdbu_1280_3%40384_25epoch.zip)|
26+
|NAS-FPN|1024|R50v1b-FPN|7@256|25 epoch|8X 1080Ti|4|yes|9.1G|17 img/s|44.2|[model](https://1dv.alarge.space/retina_r50v1b_nasfpn_1024_7%40256_25epoch.zip)|
27+
|NAS-FPN|1280|R50v1b-FPN|7@384|25 epoch|8X 1080Ti|2|yes|8.9G|10 img/s|45.3|[model](https://1dv.alarge.space/retina_r50v1b_nasfpn_1280_7%40384_25epoch.zip)|
28+
|TD-BU*|1280|R50v1b-FPN|3@384|25 epoch|8X 1080Ti|3|yes|10.5G|12 img/s|44.7|[model](https://1dv.alarge.space/retina_r50v1b_tdbu_1280_3%40384_25epoch.zip)|
2929

3030
\* Short for TopDown-BottomUp neck which is highly symmetric proposed by Zehao.
3131
### Reference

models/efficientnet/README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -12,7 +12,7 @@ All AP results are reported on minival of the [COCO dataset](http://cocodataset.
1212

1313
|Model|InputSize|Backbone|Train Schedule|GPU|Image/GPU|FP16|Train MEM|Train Speed|Box AP|Link|
1414
|-----|-----|--------|--------------|---|---------|----|---------|-----------|---------------|----|
15-
|Faster|400x600|B5-FPN|36 epoch(6X)|8X 1080Ti|8|yes|-|75 img/s|37.2|[model](http://simpledet.alarge.space:1234/?/efficientnet_b5_fpn_bn_scratch_400_6x.zip)|
15+
|Faster|400x600|B5-FPN|36 epoch(6X)|8X 1080Ti|8|yes|-|75 img/s|37.2|[model](https://1dv.alarge.space/efficientnet_b5_fpn_bn_scratch_400_6x.zip)|
1616
|Faster|400x600|B5-FPN|54 epoch(9X)|8X 1080Ti|8|yes|-|75 img/s|37.9|-|
1717
|Faster|400x600|B5-FPN|72 epoch(12X)|8X 1080Ti|8|yes|-|75 img/s|38.3|-|
1818

0 commit comments

Comments
 (0)