|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "### kmeans" |
| 8 | + ] |
| 9 | + }, |
| 10 | + { |
| 11 | + "cell_type": "code", |
| 12 | + "execution_count": 1, |
| 13 | + "metadata": {}, |
| 14 | + "outputs": [], |
| 15 | + "source": [ |
| 16 | + "import numpy as np\n", |
| 17 | + "from sklearn.cluster import KMeans" |
| 18 | + ] |
| 19 | + }, |
| 20 | + { |
| 21 | + "cell_type": "code", |
| 22 | + "execution_count": 2, |
| 23 | + "metadata": {}, |
| 24 | + "outputs": [ |
| 25 | + { |
| 26 | + "data": { |
| 27 | + "text/plain": [ |
| 28 | + "array([[0, 2],\n", |
| 29 | + " [0, 0],\n", |
| 30 | + " [1, 0],\n", |
| 31 | + " [5, 0],\n", |
| 32 | + " [5, 2]])" |
| 33 | + ] |
| 34 | + }, |
| 35 | + "execution_count": 2, |
| 36 | + "metadata": {}, |
| 37 | + "output_type": "execute_result" |
| 38 | + } |
| 39 | + ], |
| 40 | + "source": [ |
| 41 | + "X = np.array([[0,2],[0,0],[1,0],[5,0],[5,2]])\n", |
| 42 | + "X" |
| 43 | + ] |
| 44 | + }, |
| 45 | + { |
| 46 | + "cell_type": "code", |
| 47 | + "execution_count": 14, |
| 48 | + "metadata": {}, |
| 49 | + "outputs": [ |
| 50 | + { |
| 51 | + "name": "stdout", |
| 52 | + "output_type": "stream", |
| 53 | + "text": [ |
| 54 | + "[1 1 1 0 0]\n" |
| 55 | + ] |
| 56 | + } |
| 57 | + ], |
| 58 | + "source": [ |
| 59 | + "from sklearn.cluster import KMeans\n", |
| 60 | + "kmeans = KMeans(n_clusters=2, random_state=0).fit(X)\n", |
| 61 | + "print(kmeans.labels_)" |
| 62 | + ] |
| 63 | + }, |
| 64 | + { |
| 65 | + "cell_type": "code", |
| 66 | + "execution_count": 4, |
| 67 | + "metadata": {}, |
| 68 | + "outputs": [ |
| 69 | + { |
| 70 | + "data": { |
| 71 | + "text/plain": [ |
| 72 | + "array([1, 0])" |
| 73 | + ] |
| 74 | + }, |
| 75 | + "execution_count": 4, |
| 76 | + "metadata": {}, |
| 77 | + "output_type": "execute_result" |
| 78 | + } |
| 79 | + ], |
| 80 | + "source": [ |
| 81 | + "kmeans.predict([[0, 0], [12, 3]])" |
| 82 | + ] |
| 83 | + }, |
| 84 | + { |
| 85 | + "cell_type": "code", |
| 86 | + "execution_count": 5, |
| 87 | + "metadata": {}, |
| 88 | + "outputs": [ |
| 89 | + { |
| 90 | + "data": { |
| 91 | + "text/plain": [ |
| 92 | + "array([[5. , 1. ],\n", |
| 93 | + " [0.33333333, 0.66666667]])" |
| 94 | + ] |
| 95 | + }, |
| 96 | + "execution_count": 5, |
| 97 | + "metadata": {}, |
| 98 | + "output_type": "execute_result" |
| 99 | + } |
| 100 | + ], |
| 101 | + "source": [ |
| 102 | + "kmeans.cluster_centers_" |
| 103 | + ] |
| 104 | + }, |
| 105 | + { |
| 106 | + "cell_type": "code", |
| 107 | + "execution_count": 6, |
| 108 | + "metadata": {}, |
| 109 | + "outputs": [ |
| 110 | + { |
| 111 | + "name": "stdout", |
| 112 | + "output_type": "stream", |
| 113 | + "text": [ |
| 114 | + "5.0\n" |
| 115 | + ] |
| 116 | + } |
| 117 | + ], |
| 118 | + "source": [ |
| 119 | + "import numpy as np\n", |
| 120 | + "# 定义欧式距离\n", |
| 121 | + "def euclidean_distance(x1, x2):\n", |
| 122 | + " distance = 0\n", |
| 123 | + " # 距离的平方项再开根号\n", |
| 124 | + " for i in range(len(x1)):\n", |
| 125 | + " distance += pow((x1[i] - x2[i]), 2)\n", |
| 126 | + " return np.sqrt(distance)\n", |
| 127 | + "\n", |
| 128 | + "print(euclidean_distance(X[0], X[4]))" |
| 129 | + ] |
| 130 | + }, |
| 131 | + { |
| 132 | + "cell_type": "code", |
| 133 | + "execution_count": 7, |
| 134 | + "metadata": {}, |
| 135 | + "outputs": [], |
| 136 | + "source": [ |
| 137 | + "# 定义中心初始化函数\n", |
| 138 | + "def centroids_init(k, X):\n", |
| 139 | + " m, n = X.shape\n", |
| 140 | + " centroids = np.zeros((k, n))\n", |
| 141 | + " for i in range(k):\n", |
| 142 | + " # 每一次循环随机选择一个类别中心\n", |
| 143 | + " centroid = X[np.random.choice(range(m))]\n", |
| 144 | + " centroids[i] = centroid\n", |
| 145 | + " return centroids" |
| 146 | + ] |
| 147 | + }, |
| 148 | + { |
| 149 | + "cell_type": "code", |
| 150 | + "execution_count": 8, |
| 151 | + "metadata": {}, |
| 152 | + "outputs": [], |
| 153 | + "source": [ |
| 154 | + "# 定义样本的最近质心点所属的类别索引\n", |
| 155 | + "def closest_centroid(sample, centroids):\n", |
| 156 | + " closest_i = 0\n", |
| 157 | + " closest_dist = float('inf')\n", |
| 158 | + " for i, centroid in enumerate(centroids):\n", |
| 159 | + " # 根据欧式距离判断,选择最小距离的中心点所属类别\n", |
| 160 | + " distance = euclidean_distance(sample, centroid)\n", |
| 161 | + " if distance < closest_dist:\n", |
| 162 | + " closest_i = i\n", |
| 163 | + " closest_dist = distance\n", |
| 164 | + " return closest_i" |
| 165 | + ] |
| 166 | + }, |
| 167 | + { |
| 168 | + "cell_type": "code", |
| 169 | + "execution_count": 9, |
| 170 | + "metadata": {}, |
| 171 | + "outputs": [], |
| 172 | + "source": [ |
| 173 | + "# 定义构建类别过程\n", |
| 174 | + "def build_clusters(centroids, k, X):\n", |
| 175 | + " clusters = [[] for _ in range(k)]\n", |
| 176 | + " for x_i, x in enumerate(X):\n", |
| 177 | + " # 将样本划分到最近的类别区域\n", |
| 178 | + " centroid_i = closest_centroid(x, centroids)\n", |
| 179 | + " clusters[centroid_i].append(x_i)\n", |
| 180 | + " return clusters" |
| 181 | + ] |
| 182 | + }, |
| 183 | + { |
| 184 | + "cell_type": "code", |
| 185 | + "execution_count": 10, |
| 186 | + "metadata": {}, |
| 187 | + "outputs": [], |
| 188 | + "source": [ |
| 189 | + "# 根据上一步聚类结果计算新的中心点\n", |
| 190 | + "def calculate_centroids(clusters, k, X):\n", |
| 191 | + " n = X.shape[1]\n", |
| 192 | + " centroids = np.zeros((k, n))\n", |
| 193 | + " # 以当前每个类样本的均值为新的中心点\n", |
| 194 | + " for i, cluster in enumerate(clusters):\n", |
| 195 | + " centroid = np.mean(X[cluster], axis=0)\n", |
| 196 | + " centroids[i] = centroid\n", |
| 197 | + " return centroids" |
| 198 | + ] |
| 199 | + }, |
| 200 | + { |
| 201 | + "cell_type": "code", |
| 202 | + "execution_count": 11, |
| 203 | + "metadata": {}, |
| 204 | + "outputs": [], |
| 205 | + "source": [ |
| 206 | + "# 获取每个样本所属的聚类类别\n", |
| 207 | + "def get_cluster_labels(clusters, X):\n", |
| 208 | + " y_pred = np.zeros(X.shape[0])\n", |
| 209 | + " for cluster_i, cluster in enumerate(clusters):\n", |
| 210 | + " for X_i in cluster:\n", |
| 211 | + " y_pred[X_i] = cluster_i\n", |
| 212 | + " return y_pred" |
| 213 | + ] |
| 214 | + }, |
| 215 | + { |
| 216 | + "cell_type": "code", |
| 217 | + "execution_count": 12, |
| 218 | + "metadata": {}, |
| 219 | + "outputs": [], |
| 220 | + "source": [ |
| 221 | + "# 根据上述各流程定义kmeans算法流程\n", |
| 222 | + "def kmeans(X, k, max_iterations):\n", |
| 223 | + " # 1.初始化中心点\n", |
| 224 | + " centroids = centroids_init(k, X)\n", |
| 225 | + " # 遍历迭代求解\n", |
| 226 | + " for _ in range(max_iterations):\n", |
| 227 | + " # 2.根据当前中心点进行聚类\n", |
| 228 | + " clusters = build_clusters(centroids, k, X)\n", |
| 229 | + " # 保存当前中心点\n", |
| 230 | + " prev_centroids = centroids\n", |
| 231 | + " # 3.根据聚类结果计算新的中心点\n", |
| 232 | + " centroids = calculate_centroids(clusters, k, X)\n", |
| 233 | + " # 4.设定收敛条件为中心点是否发生变化\n", |
| 234 | + " diff = centroids - prev_centroids\n", |
| 235 | + " if not diff.any():\n", |
| 236 | + " break\n", |
| 237 | + " # 返回最终的聚类标签\n", |
| 238 | + " return get_cluster_labels(clusters, X)" |
| 239 | + ] |
| 240 | + }, |
| 241 | + { |
| 242 | + "cell_type": "code", |
| 243 | + "execution_count": 13, |
| 244 | + "metadata": {}, |
| 245 | + "outputs": [ |
| 246 | + { |
| 247 | + "name": "stdout", |
| 248 | + "output_type": "stream", |
| 249 | + "text": [ |
| 250 | + "[0. 0. 0. 1. 1.]\n" |
| 251 | + ] |
| 252 | + } |
| 253 | + ], |
| 254 | + "source": [ |
| 255 | + "# 测试数据\n", |
| 256 | + "X = np.array([[0,2],[0,0],[1,0],[5,0],[5,2]])\n", |
| 257 | + "# 设定聚类类别为2个,最大迭代次数为10次\n", |
| 258 | + "labels = kmeans(X, 2, 10)\n", |
| 259 | + "# 打印每个样本所属的类别标签\n", |
| 260 | + "print(labels)" |
| 261 | + ] |
| 262 | + }, |
| 263 | + { |
| 264 | + "cell_type": "code", |
| 265 | + "execution_count": null, |
| 266 | + "metadata": {}, |
| 267 | + "outputs": [], |
| 268 | + "source": [] |
| 269 | + } |
| 270 | + ], |
| 271 | + "metadata": { |
| 272 | + "kernelspec": { |
| 273 | + "display_name": "Python 3", |
| 274 | + "language": "python", |
| 275 | + "name": "python3" |
| 276 | + }, |
| 277 | + "language_info": { |
| 278 | + "codemirror_mode": { |
| 279 | + "name": "ipython", |
| 280 | + "version": 3 |
| 281 | + }, |
| 282 | + "file_extension": ".py", |
| 283 | + "mimetype": "text/x-python", |
| 284 | + "name": "python", |
| 285 | + "nbconvert_exporter": "python", |
| 286 | + "pygments_lexer": "ipython3", |
| 287 | + "version": "3.7.3" |
| 288 | + }, |
| 289 | + "toc": { |
| 290 | + "base_numbering": 1, |
| 291 | + "nav_menu": {}, |
| 292 | + "number_sections": true, |
| 293 | + "sideBar": true, |
| 294 | + "skip_h1_title": false, |
| 295 | + "title_cell": "Table of Contents", |
| 296 | + "title_sidebar": "Contents", |
| 297 | + "toc_cell": false, |
| 298 | + "toc_position": {}, |
| 299 | + "toc_section_display": true, |
| 300 | + "toc_window_display": false |
| 301 | + } |
| 302 | + }, |
| 303 | + "nbformat": 4, |
| 304 | + "nbformat_minor": 4 |
| 305 | +} |
0 commit comments