You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: NN/nnsetup.m
-1Lines changed: 0 additions & 1 deletion
Original file line number
Diff line number
Diff line change
@@ -6,7 +6,6 @@
6
6
nn.size =architecture;
7
7
nn.n = numel(nn.size);
8
8
9
-
nn.normalize_input =1; % normalize input elements to be between [-1 1]. Note: use a linear output function if training auto-encoders with normalized inputs
10
9
nn.activation_function ='tanh_opt'; % Activation functions of hidden layers: 'sigm' (sigmoid) or 'tanh_opt' (optimal tanh).
11
10
nn.learningRate =2; % learning rate Note: typically needs to be lower when using 'sigm' activation function and non-normalized inputs.
disp(['epoch ' num2str(i) '/' num2str(opts.numepochs) '. Took ' num2str(t) ' seconds''. Mean squared error on training set is ' num2str(mean(L((n-numbatches):(n-1))))]);
loss = nneval(nn, loss, train_x, train_y, val_x, val_y);
65
+
else
66
+
loss = nneval(nn, loss, train_x, train_y);
67
+
end
68
+
nnupdatefigures(nn, fhandle, loss, opts, i);
69
+
end
70
+
71
+
disp(['epoch ' num2str(i) '/' num2str(opts.numepochs) '. Took ' num2str(t) ' seconds''. Mean squared error on training set is ' num2str(mean(L((n-numbatches):(n-1))))]);
0 commit comments