|
32 | 32 | nn = nntrain(nn, train_x, train_y, opts); |
33 | 33 | [er, bad] = nntest(nn, test_x, test_y); |
34 | 34 | assert(er < 0.16, 'Too big error'); |
| 35 | + |
| 36 | +%% ex2 train a 100-100 hidden unit SDAE and use it to initialize a FFNN |
| 37 | +% Setup and train a stacked denoising autoencoder (SDAE) |
| 38 | +rng(0); |
| 39 | +sae = saesetup([784 100 100]); |
| 40 | +sae.ae{1}.normalize_input = 0; |
| 41 | +sae.ae{1}.activation_function = 'sigm'; |
| 42 | +sae.ae{1}.learningRate = 1; |
| 43 | +sae.ae{1}.inputZeroMaskedFraction = 0.5; |
| 44 | + |
| 45 | +sae.ae{2}.normalize_input = 0; |
| 46 | +sae.ae{2}.activation_function = 'sigm'; |
| 47 | +sae.ae{2}.learningRate = 1; |
| 48 | +sae.ae{2}.inputZeroMaskedFraction = 0.5; |
| 49 | + |
| 50 | +opts.numepochs = 1; |
| 51 | +opts.batchsize = 100; |
| 52 | +sae = saetrain(sae, train_x, opts); |
| 53 | +visualize(sae.ae{1}.W{1}(:,2:end)') |
| 54 | + |
| 55 | +% Use the SDAE to initialize a FFNN |
| 56 | +nn = nnsetup([784 100 100 10]); |
| 57 | +nn.normalize_input = 0; |
| 58 | +nn.activation_function = 'sigm'; |
| 59 | +nn.learningRate = 1; |
| 60 | + |
| 61 | +%add pretrained weights |
| 62 | +nn.W{1} = sae.ae{1}.W{1}; |
| 63 | +nn.W{2} = sae.ae{2}.W{1}; |
| 64 | + |
| 65 | +% Train the FFNN |
| 66 | +opts.numepochs = 1; |
| 67 | +opts.batchsize = 100; |
| 68 | +nn = nntrain(nn, train_x, train_y, opts); |
| 69 | +[er, bad] = nntest(nn, test_x, test_y); |
| 70 | +assert(er < 0.1, 'Too big error'); |
0 commit comments