|
| 1 | +# coding:UTF-8 |
| 2 | +''' |
| 3 | +Date:20160923 |
| 4 | +@author: zhaozhiyong |
| 5 | +''' |
| 6 | + |
| 7 | +import numpy as np |
| 8 | +import math |
| 9 | + |
| 10 | +MinPts = 5 # 定义半径内的最少的数据点的个数 |
| 11 | + |
| 12 | +def load_data(file_path): |
| 13 | + '''导入数据 |
| 14 | + input: file_path(string):文件名 |
| 15 | + output: data(mat):数据 |
| 16 | + ''' |
| 17 | + f = open(file_path) |
| 18 | + data = [] |
| 19 | + for line in f.readlines(): |
| 20 | + data_tmp = [] |
| 21 | + lines = line.strip().split("\t") |
| 22 | + for x in lines: |
| 23 | + data_tmp.append(float(x.strip())) |
| 24 | + data.append(data_tmp) |
| 25 | + f.close() |
| 26 | + return np.mat(data) |
| 27 | + |
| 28 | +def epsilon(data, MinPts): |
| 29 | + '''计算半径 |
| 30 | + input: data(mat):训练数据 |
| 31 | + MinPts(int):半径内的数据点的个数 |
| 32 | + output: eps(float):半径 |
| 33 | + ''' |
| 34 | + m, n = np.shape(data) |
| 35 | + xMax = np.max(data, 0) |
| 36 | + xMin = np.min(data, 0) |
| 37 | + eps = ((np.prod(xMax - xMin) * MinPts * math.gamma(0.5 * n + 1)) / (m * math.sqrt(math.pi ** n))) ** (1.0 / n) |
| 38 | + return eps |
| 39 | + |
| 40 | +def distance(data): |
| 41 | + m, n = np.shape(data) |
| 42 | + dis = np.mat(np.zeros((m, m))) |
| 43 | + for i in xrange(m): |
| 44 | + for j in xrange(i, m): |
| 45 | + # 计算i和j之间的欧式距离 |
| 46 | + tmp = 0 |
| 47 | + for k in xrange(n): |
| 48 | + tmp += (data[i, k] - data[j, k]) * (data[i, k] - data[j, k]) |
| 49 | + dis[i, j] = np.sqrt(tmp) |
| 50 | + dis[j, i] = dis[i, j] |
| 51 | + return dis |
| 52 | + |
| 53 | +def find_eps(distance_D, eps): |
| 54 | + ind = [] |
| 55 | + n = np.shape(distance_D)[1] |
| 56 | + for j in xrange(n): |
| 57 | + if distance_D[0, j] <= eps: |
| 58 | + ind.append(j) |
| 59 | + return ind |
| 60 | + |
| 61 | +def dbscan(data, eps, MinPts): |
| 62 | + m = np.shape(data)[0] |
| 63 | + # 区分核心点1,边界点0和噪音点-1 |
| 64 | + types = np.mat(np.zeros((1, m))) |
| 65 | + sub_class = np.mat(np.zeros((1, m))) |
| 66 | + # 用于判断该点是否处理过,0表示未处理过 |
| 67 | + dealed = np.mat(np.zeros((m, 1))) |
| 68 | + # 计算每个数据点之间的距离 |
| 69 | + dis = distance(data) |
| 70 | + # 用于标记类别 |
| 71 | + number = 1 |
| 72 | + |
| 73 | + # 对每一个点进行处理 |
| 74 | + for i in xrange(m): |
| 75 | + # 找到未处理的点 |
| 76 | + if dealed[i, 0] == 0: |
| 77 | + # 找到第i个点到其他所有点的距离 |
| 78 | + D = dis[i, ] |
| 79 | + # 找到半径eps内的所有点 |
| 80 | + ind = find_eps(D, eps) |
| 81 | + # 区分点的类型 |
| 82 | + # 边界点 |
| 83 | + if len(ind) > 1 and len(ind) < MinPts + 1: |
| 84 | + types[0, i] = 0 |
| 85 | + sub_class[0, i] = 0 |
| 86 | + # 噪音点 |
| 87 | + if len(ind) == 1: |
| 88 | + types[0, i] = -1 |
| 89 | + sub_class[0, i] = -1 |
| 90 | + dealed[i, 0] = 1 |
| 91 | + # 核心点 |
| 92 | + if len(ind) >= MinPts + 1: |
| 93 | + types[0, i] = 1 |
| 94 | + for x in ind: |
| 95 | + sub_class[0, x] = number |
| 96 | + # 判断核心点是否密度可达 |
| 97 | + while len(ind) > 0: |
| 98 | + dealed[ind[0], 0] = 1 |
| 99 | + D = dis[ind[0], ] |
| 100 | + tmp = ind[0] |
| 101 | + del ind[0] |
| 102 | + ind_1 = find_eps(D, eps) |
| 103 | + |
| 104 | + if len(ind_1) > 1: # 处理非噪音点 |
| 105 | + for x1 in ind_1: |
| 106 | + sub_class[0, x1] = number |
| 107 | + if len(ind_1) >= MinPts + 1: |
| 108 | + types[0, tmp] = 1 |
| 109 | + else: |
| 110 | + types[0, tmp] = 0 |
| 111 | + |
| 112 | + for j in xrange(len(ind_1)): |
| 113 | + if dealed[ind_1[j], 0] == 0: |
| 114 | + dealed[ind_1[j], 0] = 1 |
| 115 | + ind.append(ind_1[j]) |
| 116 | + sub_class[0, ind_1[j]] = number |
| 117 | + number += 1 |
| 118 | + |
| 119 | + # 最后处理所有未分类的点为噪音点 |
| 120 | + ind_2 = ((sub_class == 0).nonzero())[1] |
| 121 | + for x in ind_2: |
| 122 | + sub_class[0, x] = -1 |
| 123 | + types[0, x] = -1 |
| 124 | + |
| 125 | + return types, sub_class |
| 126 | + |
| 127 | +def save_result(file_name, source): |
| 128 | + f = open(file_name, "w") |
| 129 | + n = np.shape(source)[1] |
| 130 | + tmp = [] |
| 131 | + for i in xrange(n): |
| 132 | + tmp.append(str(source[0, i])) |
| 133 | + f.write("\n".join(tmp)) |
| 134 | + f.close() |
| 135 | + |
| 136 | +if __name__ == "__main__": |
| 137 | + # 1、导入数据 |
| 138 | + print "----------- 1、load data ----------" |
| 139 | + data = load_data("data.txt") |
| 140 | + # 2、计算半径 |
| 141 | + print "----------- 2、calculate eps ----------" |
| 142 | + eps = epsilon(data, MinPts) |
| 143 | + # 3、利用DBSCAN算法进行训练 |
| 144 | + print "----------- 3、DBSCAN -----------" |
| 145 | + types, sub_class = dbscan(data, eps, MinPts) |
| 146 | + # 4、保存最终的结果 |
| 147 | + print "----------- 4、save result -----------" |
| 148 | + save_result("types", types) |
| 149 | + save_result("sub_class", sub_class) |
0 commit comments