@@ -35,8 +35,6 @@ namespace Microsoft.ML.Tests
35
35
{
36
36
public class OnnxConversionTest : BaseTestBaseline
37
37
{
38
- private int _gpuid = 0 ;
39
-
40
38
private class AdultData
41
39
{
42
40
[ LoadColumn ( 0 , 10 ) , ColumnName ( "FeatureVector" ) ]
@@ -91,7 +89,7 @@ public void SimpleEndToEndOnnxConversionTest()
91
89
if ( IsOnnxRuntimeSupported ( ) )
92
90
{
93
91
// Step 3: Evaluate the saved ONNX model using the data used to train the ML.NET pipeline.
94
- var onnxEstimator = mlContext . Transforms . ApplyOnnxModel ( onnxModelPath , gpuDeviceId : _gpuid ) ;
92
+ var onnxEstimator = mlContext . Transforms . ApplyOnnxModel ( onnxModelPath ) ;
95
93
var onnxTransformer = onnxEstimator . Fit ( data ) ;
96
94
var onnxResult = onnxTransformer . Transform ( data ) ;
97
95
@@ -182,7 +180,7 @@ public void KmeansOnnxConversionTest()
182
180
if ( IsOnnxRuntimeSupported ( ) )
183
181
{
184
182
// Evaluate the saved ONNX model using the data used to train the ML.NET pipeline.
185
- var onnxEstimator = mlContext . Transforms . ApplyOnnxModel ( onnxModelPath , gpuDeviceId : _gpuid ) ;
183
+ var onnxEstimator = mlContext . Transforms . ApplyOnnxModel ( onnxModelPath ) ;
186
184
var onnxTransformer = onnxEstimator . Fit ( data ) ;
187
185
var onnxResult = onnxTransformer . Transform ( data ) ;
188
186
CompareSelectedColumns < float > ( "Score" , "Score" , transformedData , onnxResult , 3 ) ;
@@ -237,7 +235,7 @@ public void RegressionTrainersOnnxConversionTest()
237
235
var onnxModelPath = GetOutputPath ( onnxFileName ) ;
238
236
SaveOnnxModel ( onnxModel , onnxModelPath , null ) ;
239
237
240
- var onnxEstimator = mlContext . Transforms . ApplyOnnxModel ( onnxModelPath , gpuDeviceId : _gpuid ) ;
238
+ var onnxEstimator = mlContext . Transforms . ApplyOnnxModel ( onnxModelPath ) ;
241
239
var onnxTransformer = onnxEstimator . Fit ( dataView ) ;
242
240
var onnxResult = onnxTransformer . Transform ( dataView ) ;
243
241
CompareSelectedColumns < float > ( "Score" , "Score" , transformedData , onnxResult , 3 ) ;
@@ -298,7 +296,7 @@ public void BinaryClassificationTrainersOnnxConversionTest()
298
296
if ( IsOnnxRuntimeSupported ( ) )
299
297
{
300
298
// Evaluate the saved ONNX model using the data used to train the ML.NET pipeline.
301
- var onnxEstimator = mlContext . Transforms . ApplyOnnxModel ( onnxModelPath , gpuDeviceId : _gpuid ) ;
299
+ var onnxEstimator = mlContext . Transforms . ApplyOnnxModel ( onnxModelPath ) ;
302
300
var onnxTransformer = onnxEstimator . Fit ( dataView ) ;
303
301
var onnxResult = onnxTransformer . Transform ( dataView ) ;
304
302
CompareSelectedColumns < float > ( "Score" , "Score" , transformedData , onnxResult , 3 ) ; //compare scores
@@ -331,7 +329,7 @@ public void TestVectorWhiteningOnnxConversionTest()
331
329
332
330
if ( IsOnnxRuntimeSupported ( ) )
333
331
{
334
- var onnxEstimator = mlContext . Transforms . ApplyOnnxModel ( onnxModelPath , gpuDeviceId : _gpuid ) ;
332
+ var onnxEstimator = mlContext . Transforms . ApplyOnnxModel ( onnxModelPath ) ;
335
333
var onnxTransformer = onnxEstimator . Fit ( dataView ) ;
336
334
var onnxResult = onnxTransformer . Transform ( dataView ) ;
337
335
CompareSelectedColumns < float > ( "whitened1" , "whitened1" , transformedData , onnxResult ) ;
@@ -384,7 +382,7 @@ public void PlattCalibratorOnnxConversionTest()
384
382
if ( IsOnnxRuntimeSupported ( ) )
385
383
{
386
384
// Evaluate the saved ONNX model using the data used to train the ML.NET pipeline.
387
- var onnxEstimator = mlContext . Transforms . ApplyOnnxModel ( onnxModelPath , gpuDeviceId : _gpuid ) ;
385
+ var onnxEstimator = mlContext . Transforms . ApplyOnnxModel ( onnxModelPath ) ;
388
386
var onnxTransformer = onnxEstimator . Fit ( dataView ) ;
389
387
var onnxResult = onnxTransformer . Transform ( dataView ) ;
390
388
CompareSelectedColumns < float > ( "Score" , "Score" , transformedData , onnxResult , 3 ) ;
@@ -431,7 +429,7 @@ public void PlattCalibratorOnnxConversionTest2()
431
429
// Compare model scores produced by ML.NET and ONNX's runtime.
432
430
if ( IsOnnxRuntimeSupported ( ) )
433
431
{
434
- var onnxEstimator = mlContext . Transforms . ApplyOnnxModel ( onnxModelPath , gpuDeviceId : _gpuid ) ;
432
+ var onnxEstimator = mlContext . Transforms . ApplyOnnxModel ( onnxModelPath ) ;
435
433
var onnxTransformer = onnxEstimator . Fit ( data ) ;
436
434
var onnxResult = onnxTransformer . Transform ( data ) ;
437
435
CompareSelectedColumns < float > ( "Probability" , "Probability" , transformedData , onnxResult , 3 ) ; //compare probabilities
@@ -464,7 +462,7 @@ public void TextNormalizingOnnxConversionTest()
464
462
if ( IsOnnxRuntimeSupported ( ) && ! RuntimeInformation . IsOSPlatform ( OSPlatform . Linux ) )
465
463
{
466
464
// Evaluate the saved ONNX model using the data used to train the ML.NET pipeline.
467
- var onnxEstimator = mlContext . Transforms . ApplyOnnxModel ( onnxModelPath , gpuDeviceId : _gpuid ) ;
465
+ var onnxEstimator = mlContext . Transforms . ApplyOnnxModel ( onnxModelPath ) ;
468
466
var onnxTransformer = onnxEstimator . Fit ( dataView ) ;
469
467
var onnxResult = onnxTransformer . Transform ( dataView ) ;
470
468
CompareSelectedColumns < ReadOnlyMemory < char > > ( "NormText" , "NormText" , transformedData , onnxResult ) ;
@@ -513,7 +511,7 @@ public void LpNormOnnxConversionTest(
513
511
if ( IsOnnxRuntimeSupported ( ) )
514
512
{
515
513
// Evaluate the saved ONNX model using the data used to train the ML.NET pipeline.
516
- var onnxEstimator = mlContext . Transforms . ApplyOnnxModel ( onnxModelPath , gpuDeviceId : _gpuid ) ;
514
+ var onnxEstimator = mlContext . Transforms . ApplyOnnxModel ( onnxModelPath ) ;
517
515
var onnxTransformer = onnxEstimator . Fit ( dataView ) ;
518
516
var onnxResult = onnxTransformer . Transform ( dataView ) ;
519
517
CompareSelectedColumns < float > ( "Features" , "Features" , transformedData , onnxResult , 3 ) ;
@@ -580,7 +578,7 @@ public void KeyToVectorWithBagOnnxConversionTest()
580
578
if ( IsOnnxRuntimeSupported ( ) )
581
579
{
582
580
// Evaluate the saved ONNX model using the data used to train the ML.NET pipeline.
583
- var onnxEstimator = mlContext . Transforms . ApplyOnnxModel ( onnxModelPath , gpuDeviceId : _gpuid ) ;
581
+ var onnxEstimator = mlContext . Transforms . ApplyOnnxModel ( onnxModelPath ) ;
584
582
var onnxTransformer = onnxEstimator . Fit ( data ) ;
585
583
var onnxResult = onnxTransformer . Transform ( data ) ;
586
584
CompareSelectedColumns < float > ( "Score" , "Score" , transformedData , onnxResult ) ;
@@ -901,7 +899,7 @@ public void ConcatenateOnnxConversionTest()
901
899
var onnxModelPath = GetOutputPath ( onnxModelName ) ;
902
900
SaveOnnxModel ( onnxModel , onnxModelPath , null ) ;
903
901
// Evaluate the saved ONNX model using the data used to train the ML.NET pipeline.
904
- var onnxEstimator = mlContext . Transforms . ApplyOnnxModel ( onnxModelPath , gpuDeviceId : _gpuid ) ;
902
+ var onnxEstimator = mlContext . Transforms . ApplyOnnxModel ( onnxModelPath ) ;
905
903
var onnxTransformer = onnxEstimator . Fit ( data ) ;
906
904
var onnxResult = onnxTransformer . Transform ( data ) ;
907
905
CompareSelectedColumns < double > ( "Features" , "Features" , transformedData , onnxResult ) ;
@@ -953,7 +951,7 @@ public void RemoveVariablesInPipelineTest()
953
951
if ( IsOnnxRuntimeSupported ( ) )
954
952
{
955
953
// Evaluate the saved ONNX model using the data used to train the ML.NET pipeline.
956
- var onnxEstimator = mlContext . Transforms . ApplyOnnxModel ( onnxModelPath , gpuDeviceId : _gpuid ) ;
954
+ var onnxEstimator = mlContext . Transforms . ApplyOnnxModel ( onnxModelPath ) ;
957
955
var onnxTransformer = onnxEstimator . Fit ( data ) ;
958
956
var onnxResult = onnxTransformer . Transform ( data ) ;
959
957
CompareSelectedColumns < float > ( "Score" , "Score" , transformedData , onnxResult ) ;
@@ -1018,7 +1016,7 @@ public void TokenizingByCharactersOnnxConversionTest(bool useMarkerCharacters)
1018
1016
if ( IsOnnxRuntimeSupported ( ) )
1019
1017
{
1020
1018
// Evaluate the saved ONNX model using the data used to train the ML.NET pipeline.
1021
- var onnxEstimator = mlContext . Transforms . ApplyOnnxModel ( onnxModelPath , gpuDeviceId : _gpuid ) ;
1019
+ var onnxEstimator = mlContext . Transforms . ApplyOnnxModel ( onnxModelPath ) ;
1022
1020
var onnxTransformer = onnxEstimator . Fit ( dataView ) ;
1023
1021
var onnxResult = onnxTransformer . Transform ( dataView ) ;
1024
1022
CompareSelectedColumns < ushort > ( "TokenizedText" , "TokenizedText" , transformedData , onnxResult ) ;
@@ -1093,7 +1091,7 @@ public void OnnxTypeConversionTest(DataKind fromKind, DataKind toKind)
1093
1091
1094
1092
if ( IsOnnxRuntimeSupported ( ) )
1095
1093
{
1096
- var onnxEstimator = mlContext . Transforms . ApplyOnnxModel ( onnxModelPath , gpuDeviceId : _gpuid ) ;
1094
+ var onnxEstimator = mlContext . Transforms . ApplyOnnxModel ( onnxModelPath ) ;
1097
1095
var onnxTransformer = onnxEstimator . Fit ( dataView ) ;
1098
1096
var onnxResult = onnxTransformer . Transform ( dataView ) ;
1099
1097
@@ -1130,7 +1128,7 @@ public void PcaOnnxConversionTest()
1130
1128
if ( IsOnnxRuntimeSupported ( ) )
1131
1129
{
1132
1130
// Evaluate the saved ONNX model using the data used to train the ML.NET pipeline.
1133
- var onnxEstimator = mlContext . Transforms . ApplyOnnxModel ( onnxModelPath , gpuDeviceId : _gpuid ) ;
1131
+ var onnxEstimator = mlContext . Transforms . ApplyOnnxModel ( onnxModelPath ) ;
1134
1132
var onnxTransformer = onnxEstimator . Fit ( dataView ) ;
1135
1133
var onnxResult = onnxTransformer . Transform ( dataView ) ;
1136
1134
CompareSelectedColumns < float > ( "pca" , "pca" , transformedData , onnxResult ) ;
@@ -1189,7 +1187,7 @@ public void IndicateMissingValuesOnnxConversionTest()
1189
1187
if ( IsOnnxRuntimeSupported ( ) )
1190
1188
{
1191
1189
// Evaluate the saved ONNX model using the data used to train the ML.NET pipeline.
1192
- var onnxEstimator = mlContext . Transforms . ApplyOnnxModel ( onnxModelPath , gpuDeviceId : _gpuid ) ;
1190
+ var onnxEstimator = mlContext . Transforms . ApplyOnnxModel ( onnxModelPath ) ;
1193
1191
var onnxTransformer = onnxEstimator . Fit ( dataView ) ;
1194
1192
var onnxResult = onnxTransformer . Transform ( dataView ) ;
1195
1193
CompareSelectedColumns < int > ( "MissingIndicator" , "MissingIndicator" , transformedData , onnxResult ) ;
@@ -1232,7 +1230,7 @@ public void ValueToKeyMappingOnnxConversionTest(DataKind valueType)
1232
1230
1233
1231
if ( IsOnnxRuntimeSupported ( ) )
1234
1232
{
1235
- var onnxEstimator = mlContext . Transforms . ApplyOnnxModel ( onnxModelPath , gpuDeviceId : _gpuid ) ;
1233
+ var onnxEstimator = mlContext . Transforms . ApplyOnnxModel ( onnxModelPath ) ;
1236
1234
var onnxTransformer = onnxEstimator . Fit ( dataView ) ;
1237
1235
var onnxResult = onnxTransformer . Transform ( dataView ) ;
1238
1236
CompareSelectedColumns < uint > ( "Key" , "Key" , mlnetResult , onnxResult ) ;
@@ -1281,7 +1279,7 @@ public void KeyToValueMappingOnnxConversionTest(DataKind valueType)
1281
1279
1282
1280
if ( IsOnnxRuntimeSupported ( ) )
1283
1281
{
1284
- var onnxEstimator = mlContext . Transforms . ApplyOnnxModel ( onnxModelPath , gpuDeviceId : _gpuid ) ;
1282
+ var onnxEstimator = mlContext . Transforms . ApplyOnnxModel ( onnxModelPath ) ;
1285
1283
var onnxTransformer = onnxEstimator . Fit ( dataView ) ;
1286
1284
var onnxResult = onnxTransformer . Transform ( dataView ) ;
1287
1285
CompareResults ( "Value" , "Value" , mlnetResult , onnxResult ) ;
@@ -1322,7 +1320,7 @@ public void WordTokenizerOnnxConversionTest()
1322
1320
if ( IsOnnxRuntimeSupported ( ) )
1323
1321
{
1324
1322
// Evaluate the saved ONNX model using the data used to train the ML.NET pipeline.
1325
- var onnxEstimator = mlContext . Transforms . ApplyOnnxModel ( onnxFilePath , gpuDeviceId : _gpuid ) ;
1323
+ var onnxEstimator = mlContext . Transforms . ApplyOnnxModel ( onnxFilePath ) ;
1326
1324
var onnxTransformer = onnxEstimator . Fit ( dataView ) ;
1327
1325
var onnxResult = onnxTransformer . Transform ( dataView ) ;
1328
1326
CompareSelectedColumns < ReadOnlyMemory < char > > ( "Tokens" , "Tokens" , transformedData , onnxResult ) ;
@@ -1386,7 +1384,7 @@ public void NgramOnnxConversionTest(
1386
1384
1387
1385
if ( IsOnnxRuntimeSupported ( ) )
1388
1386
{
1389
- var onnxEstimator = mlContext . Transforms . ApplyOnnxModel ( onnxFilePath , gpuDeviceId : _gpuid ) ;
1387
+ var onnxEstimator = mlContext . Transforms . ApplyOnnxModel ( onnxFilePath ) ;
1390
1388
var onnxTransformer = onnxEstimator . Fit ( dataView ) ;
1391
1389
var onnxResult = onnxTransformer . Transform ( dataView ) ;
1392
1390
var columnName = i == pipelines . Length - 1 ? "Tokens" : "NGrams" ;
@@ -1454,7 +1452,7 @@ public void OptionalColumnOnnxTest(DataKind dataKind)
1454
1452
{
1455
1453
string [ ] inputNames = onnxModel . Graph . Input . Select ( valueInfoProto => valueInfoProto . Name ) . ToArray ( ) ;
1456
1454
string [ ] outputNames = onnxModel . Graph . Output . Select ( valueInfoProto => valueInfoProto . Name ) . ToArray ( ) ;
1457
- var onnxEstimator = mlContext . Transforms . ApplyOnnxModel ( outputNames , inputNames , onnxModelPath , gpuDeviceId : _gpuid ) ;
1455
+ var onnxEstimator = mlContext . Transforms . ApplyOnnxModel ( outputNames , inputNames , onnxModelPath ) ;
1458
1456
var onnxTransformer = onnxEstimator . Fit ( dataView ) ;
1459
1457
var onnxResult = onnxTransformer . Transform ( dataView ) ;
1460
1458
CompareResults ( "Label" , "Label" , outputData , onnxResult ) ;
@@ -1521,7 +1519,7 @@ public void MulticlassTrainersOnnxConversionTest()
1521
1519
if ( IsOnnxRuntimeSupported ( ) )
1522
1520
{
1523
1521
// Evaluate the saved ONNX model using the data used to train the ML.NET pipeline.
1524
- var onnxEstimator = mlContext . Transforms . ApplyOnnxModel ( onnxModelPath , gpuDeviceId : _gpuid ) ;
1522
+ var onnxEstimator = mlContext . Transforms . ApplyOnnxModel ( onnxModelPath ) ;
1525
1523
var onnxTransformer = onnxEstimator . Fit ( dataView ) ;
1526
1524
var onnxResult = onnxTransformer . Transform ( dataView ) ;
1527
1525
CompareSelectedColumns < uint > ( "PredictedLabel" , "PredictedLabel" , transformedData , onnxResult ) ;
@@ -1554,7 +1552,7 @@ public void CopyColumnsOnnxTest()
1554
1552
if ( IsOnnxRuntimeSupported ( ) )
1555
1553
{
1556
1554
// Evaluate the saved ONNX model using the data used to train the ML.NET pipeline.
1557
- var onnxEstimator = mlContext . Transforms . ApplyOnnxModel ( onnxModelPath , gpuDeviceId : _gpuid ) ;
1555
+ var onnxEstimator = mlContext . Transforms . ApplyOnnxModel ( onnxModelPath ) ;
1558
1556
var onnxTransformer = onnxEstimator . Fit ( dataView ) ;
1559
1557
var onnxResult = onnxTransformer . Transform ( dataView ) ;
1560
1558
CompareSelectedColumns < float > ( "Target" , "Target1" , transformedData , onnxResult ) ;
@@ -1615,7 +1613,7 @@ public void UseKeyDataViewTypeAsUInt32InOnnxInput()
1615
1613
if ( IsOnnxRuntimeSupported ( ) )
1616
1614
{
1617
1615
// Step 5: Apply Onnx Model
1618
- var onnxEstimator = mlContext . Transforms . ApplyOnnxModel ( outputNames , inputNames , onnxModelPath , gpuDeviceId : _gpuid ) ;
1616
+ var onnxEstimator = mlContext . Transforms . ApplyOnnxModel ( outputNames , inputNames , onnxModelPath ) ;
1619
1617
var onnxResult = onnxEstimator . Fit ( reloadedData ) . Transform ( reloadedData ) ;
1620
1618
1621
1619
// Step 6: Compare results to an onnx model created using the mappedData IDataView
@@ -1627,7 +1625,7 @@ public void UseKeyDataViewTypeAsUInt32InOnnxInput()
1627
1625
string onnxModelPath2 = GetOutputPath ( "onnxmodel2-kdvt-as-uint32.onnx" ) ;
1628
1626
using ( FileStream stream = new FileStream ( onnxModelPath2 , FileMode . Create ) )
1629
1627
mlContext . Model . ConvertToOnnx ( model , mappedData , stream ) ;
1630
- var onnxEstimator2 = mlContext . Transforms . ApplyOnnxModel ( outputNames , inputNames , onnxModelPath2 , gpuDeviceId : _gpuid ) ;
1628
+ var onnxEstimator2 = mlContext . Transforms . ApplyOnnxModel ( outputNames , inputNames , onnxModelPath2 ) ;
1631
1629
var onnxResult2 = onnxEstimator2 . Fit ( originalData ) . Transform ( originalData ) ;
1632
1630
1633
1631
var stdSuffix = ".output" ;
@@ -1680,7 +1678,7 @@ public void FeatureSelectionOnnxTest()
1680
1678
if ( IsOnnxRuntimeSupported ( ) )
1681
1679
{
1682
1680
// Evaluate the saved ONNX model using the data used to train the ML.NET pipeline.
1683
- var onnxEstimator = mlContext . Transforms . ApplyOnnxModel ( onnxModelPath , gpuDeviceId : _gpuid ) ;
1681
+ var onnxEstimator = mlContext . Transforms . ApplyOnnxModel ( onnxModelPath ) ;
1684
1682
var onnxTransformer = onnxEstimator . Fit ( dataView ) ;
1685
1683
var onnxResult = onnxTransformer . Transform ( dataView ) ;
1686
1684
CompareSelectedColumns < float > ( "FeatureSelectMIScalarFloat" , "FeatureSelectMIScalarFloat" , transformedData , onnxResult ) ;
@@ -1728,7 +1726,7 @@ public void SelectColumnsOnnxTest()
1728
1726
// Evaluate the saved ONNX model using the data used to train the ML.NET pipeline.
1729
1727
string [ ] inputNames = onnxModel . Graph . Input . Select ( valueInfoProto => valueInfoProto . Name ) . ToArray ( ) ;
1730
1728
string [ ] outputNames = onnxModel . Graph . Output . Select ( valueInfoProto => valueInfoProto . Name ) . ToArray ( ) ;
1731
- var onnxEstimator = mlContext . Transforms . ApplyOnnxModel ( outputNames , inputNames , onnxModelPath , gpuDeviceId : _gpuid ) ;
1729
+ var onnxEstimator = mlContext . Transforms . ApplyOnnxModel ( outputNames , inputNames , onnxModelPath ) ;
1732
1730
var onnxTransformer = onnxEstimator . Fit ( dataView ) ;
1733
1731
var onnxResult = onnxTransformer . Transform ( dataView ) ;
1734
1732
0 commit comments