This project is for classifying the biometric feature in a group. It can control the permission of entrance, which is more secure than the key. For instance, recognize family member to entry home or employees in a company, etc. It will process in this procedure.
- collect the person’s facial pictures and sort it in specific file structure.
- detecte the boxes of face
- dlib shape_predictor_68_face_landmarks will get the facial feature
- compute features in training data to an 128D vector
- output to feature fusion
use deep-speaker cnn model to get the feature of voice pass
use face_descript_compute.py to compute facial description
flowchart LR
A(collect image) -->|cnn_face_detection| B(128D vector)
B --> C(feature fusion)
project
│
└───data
│ │
│ └───person_1
│ │ person_1_face-1.jpg
│ │ person_1_face-2.jpg
│ │ ...
│ │ person_1_face-n.jpg
│ │
│ └───person_2
│ │ person_2_face-1.jpg
│ │ person_2_face-2.jpg
│ │ ...
│ │ person_2_face-n.jpg
│ ...
│ ...
│ │
│ └───person_n
│ │ person_n_face-1.jpg
│ │ person_n_face-2.jpg
│ │ ...
│ │ person_n_face-n.jpg
│
└───test
│ file1.jpg
│ file2.jpg