|
64 | 64 | }, |
65 | 65 | { |
66 | 66 | "cell_type": "code", |
67 | | - "execution_count": 4, |
| 67 | + "execution_count": 3, |
68 | 68 | "metadata": { |
69 | 69 | "autoscroll": false, |
70 | 70 | "collapsed": false, |
|
81 | 81 | }, |
82 | 82 | { |
83 | 83 | "cell_type": "code", |
84 | | - "execution_count": 5, |
| 84 | + "execution_count": 4, |
85 | 85 | "metadata": { |
86 | 86 | "autoscroll": false, |
87 | 87 | "collapsed": false, |
|
94 | 94 | { |
95 | 95 | "data": { |
96 | 96 | "text/plain": [ |
97 | | - "<matplotlib.figure.Figure at 0x1119974e0>" |
| 97 | + "<matplotlib.figure.Figure at 0x10ace55c0>" |
98 | 98 | ] |
99 | 99 | }, |
100 | 100 | "metadata": {}, |
|
158 | 158 | }, |
159 | 159 | { |
160 | 160 | "cell_type": "code", |
161 | | - "execution_count": 137, |
| 161 | + "execution_count": 5, |
162 | 162 | "metadata": { |
163 | 163 | "autoscroll": false, |
164 | 164 | "collapsed": false, |
|
181 | 181 | }, |
182 | 182 | { |
183 | 183 | "cell_type": "code", |
184 | | - "execution_count": 138, |
| 184 | + "execution_count": 6, |
185 | 185 | "metadata": { |
186 | 186 | "autoscroll": false, |
187 | 187 | "collapsed": false, |
|
193 | 193 | "outputs": [ |
194 | 194 | { |
195 | 195 | "data": { |
196 | | - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGCdJREFUeJzt3X+UFeWd5/H3R0E7EUViM8YI2OjiRCC9iI22YTUaf0Q5\nBPQkMnJ2FCKROOCu4ySb1UxOQtTJmMyoZ42DSI4IJg6DI6MhrrNRDP4805HGkBYwUTCtNksEGwEJ\nYES++8ct2Ct207f71r2XW/15ndOn6z5Vt55v2fjp6qfqPqWIwMzMsuuQShdgZmal5aA3M8s4B72Z\nWcY56M3MMs5Bb2aWcQ56M7OMc9CbmWWcg97MLOMc9GZmGden0gUA1NbWRl1dXaXLMDOrKitWrHg7\nIgZ2td1BEfR1dXU0NzdXugwzs6oi6fVCtuty6EbSYEnLJK2RtFrSdUn7JyQ9IenV5PuApF2S7pS0\nVlKLpNHFHYqZmRWjkDH63cDXI2I40AjMlDQcuAF4MiKGAU8mrwEuBoYlX9OBu1Ov2szMCtZl0EfE\nhoh4MVl+F3gZOB6YCCxINlsAXJIsTwTuj5wm4GhJx6VeuZmZFaRbY/SS6oBTgV8Bx0bEhmTVH4Bj\nk+XjgTfz3taWtG3Ia0PSdHJn/AwZMqSbZZtZb/X+++/T1tbGrl27Kl1K2dTU1DBo0CD69u3bo/cX\nHPSS+gGLgb+OiG2S9q2LiJDUrYntI2IuMBegoaHBk+KbWUHa2to48sgjqaurIz+HsioiaG9vp62t\njaFDh/ZoHwXdRy+pL7mQfyAi/i1pfmvvkEzyfWPSvh4YnPf2QUmbmVnRdu3axTHHHNMrQh5AEscc\nc0xRf8EUcteNgHuBlyPi9rxVS4ApyfIU4Gd57Vcmd980AlvzhnjMzIrWW0J+r2KPt5Chm7HAFcBL\nklYmbd8CbgUelDQNeB2YlKx7DBgHrAV2AF8pqkIzMytKl0EfEc8Bnf06Oa+D7QOYWWRdZmYFueOJ\nV1Ld3/UXnJzq/r7zne9w9tlnc/7556e63+44KD4Za3awmr1ydtn7nDFqRtn7tNK56aabKl2CJzUz\nM+uO1tZWTjnlFK6++mpGjBjBhRdeyM6dO1m5ciWNjY3U19dz6aWX8s477wAwdepUHnroIQBuuOEG\nhg8fTn19Pd/4xjcA2LRpE1/60pcYM2YMY8aM4fnnn0+9Zge9mVk3vfrqq8ycOZPVq1dz9NFHs3jx\nYq688kp+8IMf0NLSwmc+8xm+973vfeg97e3tPPzww6xevZqWlha+/e1vA3Dddddx/fXXs3z5chYv\nXsxXv/rV1Ov10I2ZWTcNHTqUUaNGAXDaaaexbt06tmzZwuc+9zkApkyZwmWXXfah9/Tv35+amhqm\nTZvG+PHjGT9+PABLly5lzZo1+7bbtm0b27dvp1+/fqnV66A3M+umww8/fN/yoYceypYtW7p8T58+\nfXjhhRd48skneeihh7jrrrv45S9/yZ49e2hqaqKmpqZk9XroxsysSP3792fAgAE8++yzAPzkJz/Z\nd3a/1/bt29m6dSvjxo3jjjvu4De/+Q0AF154IT/60Y/2bbdy5UrS5jN6s/0t+/v/v7ylpXz9Dj2r\nfH1lSNq3Q/bUggULuOaaa9ixYwcnnngi991334fWv/vuu0ycOJFdu3YREdx+e+7zp3feeSczZ86k\nvr6e3bt3c/bZZzNnzpxUa3PQm5l1Q11dHatWrdr3eu/dMwBNTU0f2X7+/Pn7ll944YWPrK+trWXR\nokXpFrkfD92YmWWcg97MLOMc9GZmGecxeqsaZZuOoJwXYM3KwGf0ZmYZ56A3M8s4D92YWXXL/9xD\nGs69Md397Wfq1KmMHz+eL3/5yyXtJ5/P6M3Meigi2LNnT6XL6JLP6O3gVqlPqZp1orW1lS984Quc\nccYZrFixgm9+85vMmTOH9957j5NOOon77ruPfv36cdNNN/Hzn/+cnTt38tnPfpZ77rmnYo9ALOSZ\nsfMkbZS0Kq9tkaSVyVfr3kcMSqqTtDNvXbqf4zUzOwi8+uqrzJgxg6effpp7772XpUuX8uKLL9LQ\n0LBvaoNrr72W5cuXs2rVKnbu3Mmjjz5asXoLOaOfD9wF3L+3ISL+Yu+ypNuArXnbr4uIUWkVaGZ2\nsDnhhBNobGzk0UcfZc2aNYwdOxaAP/3pT5x55pkALFu2jB/+8Ifs2LGDzZs3M2LECL74xS9WpN5C\nnhn7jKS6jtYp93fIJODz6ZZlZnbwOuKII4DcGP0FF1zAwoULP7R+165dzJgxg+bmZgYPHsysWbPY\ntWtXJUoFir8YexbwVkS8mtc2VNKvJT0tydPxmVlmNTY28vzzz7N27VoA/vjHP/LKK6/sC/Xa2lq2\nb9++71GClVLsxdjJQP6vsg3AkIhol3Qa8IikERGxbf83SpoOTAcYMmRIkWWYWa9V4tshD2TgwIHM\nnz+fyZMn89577wFwyy23cPLJJ3P11VczcuRIPvnJTzJmzJiK1QigiOh6o9zQzaMRMTKvrQ+wHjgt\nIto6ed9TwDciovlA+29oaIjm5gNuYr1V3l03s7N+100yH/2MUTMqXMjB7eWXX+aUU06pdBll19Fx\nS1oREQ1dvbeYoZvzgd/mh7ykgZIOTZZPBIYBrxXRh5mZFamQ2ysXAv8B/LmkNknTklWX8+FhG4Cz\ngZbkdsuHgGsiYnOaBZuZWfcUctfN5E7ap3bQthhYXHxZZmaWFk+BYGaWcQ56M7OMc9CbmWWcJzUz\ns6qW9pPHCrm99c477+Tuu+9m9OjRPPDAA6n2XwoOejOzbpo9ezZLly5l0KBBXW67e/du+vSpbNR6\n6MbMrBuuueYaXnvtNS6++GJuu+02LrnkEurr62lsbKSlJfehvlmzZnHFFVcwduxYrrjiCnbs2MGk\nSZMYPnw4l156KWeccQZ7PyT6+OOPc+aZZzJ69Gguu+wytm/fnnrNDnozs26YM2cOn/rUp1i2bBmt\nra2ceuqptLS08P3vf58rr7xy33Zr1qxh6dKlLFy4kNmzZzNgwADWrFnDzTffzIoVKwB4++23ueWW\nWzqc5jhNHroxM+uh5557jsWLcx8d+vznP097ezvbtuWm9powYQIf+9jH9m133XXXATBy5Ejq6+sB\naGpq6nSa4zQ56M3MSmDvVMYH0tk0x2nz0I2ZWQ+dddZZ++66eeqpp6itreWoo476yHZjx47lwQcf\nBHJDOi+99BLQ+TTHafMZvZlVtUrO9jlr1iyuuuoq6uvr+fjHP86CBQs63G7GjBlMmTKF4cOH8+lP\nf5oRI0bQv3//A05znCYHvZlZN7W2tu5bfuSRRz6yftasWR96XVNTw09/+lNqampYt24d559/Piec\ncAKQG9tfvnx5Kct10JuZldqOHTs499xzef/994kIZs+ezWGHHVa2/h30ZmYlduSRR1LJhyv5YqyZ\nVZ1CnoyXJcUer4PezKpKTU0N7e3tvSbsI4L29nZqamp6vA8P3ZhZVRk0aBBtbW1s2rSp0qWUTU1N\nTUHz6nTGQW9mVaVv374MHTq00mVUlS6DXtI8YDywMSJGJm2zgKuBvb9SvxURjyXrbgSmAR8A/z0i\nflGCus2y5/fP5r6/s7W8/Z57Y3n7s7IrZIx+PnBRB+13RMSo5GtvyA8n99DwEcl7Zks6NK1izcys\n+7oM+oh4Bthc4P4mAv8SEe9FxO+BtcDpRdRnZmZFKuaum2sltUiaJ2lA0nY88GbeNm1Jm5mZVUhP\ng/5u4CRgFLABuK27O5A0XVKzpObedPXczKzcenTXTUS8tXdZ0o+BR5OX64HBeZsOSto62sdcYC5A\nQ0ND77ghNkPSfk5np7a0lKcfswzr0Rm9pOPyXl4KrEqWlwCXSzpc0lBgGPBCcSWamVkxCrm9ciFw\nDlArqQ34LnCOpFFAAK3A1wAiYrWkB4E1wG5gZkR8UJrSzcysEF0GfURM7qD53gNs/3fA3xVTlJmZ\npcdz3ZiZZZynQLDCLPv7D7/2RVKzquEzejOzjHPQm5llnIPezCzjHPRmZhnnoDczyzgHvZlZxjno\nzcwyzkFvZpZxDnozs4xz0JuZZZyD3sws4xz0ZmYZ56A3M8s4B72ZWcY56M3MMq7LoJc0T9JGSavy\n2v5B0m8ltUh6WNLRSXudpJ2SViZfc0pZvJmZda2QM/r5wEX7tT0BjIyIeuAV4Ma8desiYlTydU06\nZZqZWU91GfQR8Qyweb+2xyNid/KyCRhUgtrMzCwFaYzRXwX8e97roZJ+LelpSWelsH8zMytCUc+M\nlfS3wG7ggaRpAzAkItolnQY8ImlERGzr4L3TgekAQ4YMKaYMMzM7gB6f0UuaCowH/mtEBEBEvBcR\n7cnyCmAdcHJH74+IuRHREBENAwcO7GkZZmbWhR4FvaSLgG8CEyJiR177QEmHJssnAsOA19Io1MzM\neqbLoRtJC4FzgFpJbcB3yd1lczjwhCSApuQOm7OBmyS9D+wBromIzR3u2Mw6NHtLS3k7XDmbGaNm\nlLdPK6sugz4iJnfQfG8n2y4GFhdblJmZpaeoi7F2cJi9cnbpOyn3WaaZpcZBb9bb/f5ZeGdr+fs9\n98aut7FUeK4bM7OMc9CbmWWcg97MLOMc9GZmGeegNzPLuEzcdXPHE69UpN/rL+hwdgczs4OKz+jN\nzDLOQW9mlnEOejOzjHPQm5llnIPezCzjHPRmZhmXidsrLfve3LKzYn0PPvpjFevbLA0+ozczyzgH\nvZlZxjnozcwyrqAxeknzgPHAxogYmbR9AlgE1AGtwKSIeEe5h8j+L2AcsAOYGhEvpl+6VUIlx8rN\nrGcKvRg7H7gLuD+v7QbgyYi4VdINyev/CVwMDEu+zgDuTr5bSvaf2+fFbe0l73PQNge8WbUqaOgm\nIp4BNu/XPBFYkCwvAC7Ja78/cpqAoyUdl0axZmbWfcXcXnlsRGxIlv8AHJssHw+8mbddW9K2AbMq\nVKnhKt/WaWlJ5WJsRAQQ3XmPpOmSmiU1b9q0KY0yzMysA8Wc0b8l6biI2JAMzWxM2tcDg/O2G5S0\nfUhEzAXmAjQ0NHTrl8TBolLz4JuZdUcxZ/RLgCnJ8hTgZ3ntVyqnEdiaN8RjZmZlVujtlQuBc4Ba\nSW3Ad4FbgQclTQNeByYlmz9G7tbKteRur/xKyjWbmVk3FBT0ETG5k1XndbBtADOLKcrMymv2lpay\n9zmj7D32Xp7UzMx6vUpebyvHs6cd9Gb2EeW4pbSjcC1H6PVGDnqzg5Snm7C0OOjN7KDhW5ZLw7NX\nmpllnIPezCzjHPRmZhnnoDczyzgHvZlZxvmumyrT+Mbcj7RtPGRtBSoxs2rhM3ozs4xz0JuZZZyD\n3sws4xz0ZmYZ56A3M8s4B72ZWcY56M3MMq7H99FL+nNgUV7TicB3gKOBq4FNSfu3IuKxHldoZmZF\n6XHQR8TvgFEAkg4F1gMPk3tG7B0R8Y+pVGhmZkVJa+jmPGBdRLye0v7MzCwlaQX95cDCvNfXSmqR\nNE/SgJT6MDOzHig66CUdBkwA/jVpuhs4idywzgbgtk7eN11Ss6TmTZs2dbSJmZmlII0z+ouBFyPi\nLYCIeCsiPoiIPcCPgdM7elNEzI2IhohoGDhwYAplmJlZR9II+snkDdtIOi5v3aXAqhT6MDOzHipq\nmmJJRwAXAF/La/6hpFFAAK37rTMzszIrKugj4o/AMfu1XVFURWZmlip/MtbMLOMc9GZmGeegNzPL\nOAe9mVnGOejNzDLOQW9mlnEOejOzjHPQm5llnIPezCzjHPRmZhnnoDczyzgHvZlZxjnozcwyrqjZ\nK83MeqrxjbkV6bdpyPSK9FtJPqM3M8s4B72ZWcY56M3MMs5Bb2aWcUVfjJXUCrwLfADsjogGSZ8A\nFgF15J4bOyki3im2LzMz6760zujPjYhREdGQvL4BeDIihgFPJq/NzKwCSjV0MxFYkCwvAC4pUT9m\nZtaFNO6jD+BxSQHcExFzgWMjYkOy/g/AsSn0UxVe3LaopPvfeMjaku7fzLInjaD/LxGxXtKfAU9I\n+m3+yoiI5JfAh0iaDkwHGDJkSAplmJlZR4oeuomI9cn3jcDDwOnAW5KOA0i+b+zgfXMjoiEiGgYO\nHFhsGWZm1omizuglHQEcEhHvJssXAjcBS4ApwK3J958VW6iZZcuSCgxDTtjzn8re58Gg2KGbY4GH\nJe3d1z9HxP+RtBx4UNI04HVgUpH9mJlZDxUV9BHxGvCfO2hvB84rZt9mZpYOfzLWzCzjHPRmZhnn\noDczyzgHvZlZxjnozcwyzkFvZpZxDnozs4xz0JuZZZyD3sws4xz0ZmYZl8Y0xb1S4xtzO2z3fPFm\ndrDxGb2ZWcY56M3MMs5Bb2aWcQ56M7OMc9CbmWWcg97MLOMc9GZmGdfjoJc0WNIySWskrZZ0XdI+\nS9J6SSuTr3HplWtmZt1VzAemdgNfj4gXJR0JrJD0RLLujoj4x+LLMzOzYvU46CNiA7AhWX5X0svA\n8WkVZmZm6UhljF5SHXAq8Kuk6VpJLZLmSRrQyXumS2qW1Lxp06Y0yjAzsw4UPdeNpH7AYuCvI2Kb\npLuBm4FIvt8GXLX/+yJiLjAXoKGhIYqtw8ysK0sOWUvbtkVl7XP0UX9R1v46UtQZvaS+5EL+gYj4\nN4CIeCsiPoiIPcCPgdOLL9PMzHqqmLtuBNwLvBwRt+e1H5e32aXAqp6XZ2ZmxSpm6GYscAXwkqSV\nSdu3gMmSRpEbumkFvlZUhWZmVpRi7rp5DlAHqx7reTlmZpY2P3jEzHqVQdtWlLW/xi1baRoyvax9\n7s9TIJiZZZyD3sws4xz0ZmYZ56A3M8u4TFyMbXxjbqVLMDM7aPmM3sws4xz0ZmYZ56A3M8u4TIzR\nd2bJIWsrXYKZWcX5jN7MLOMc9GZmGeegNzPLOAe9mVnGOejNzDLOQW9mlnEOejOzjCtZ0Eu6SNLv\nJK2VdEOp+jEzswMrSdBLOhT4J+BiYDi558gOL0VfZmZ2YKU6oz8dWBsRr0XEn4B/ASaWqC8zMzuA\nUgX98cCbea/bkjYzMyuzis11I2k6sPeJudsl/a6I3dUCbxdfVdXobccLPubeInPHfCsAt3W6/m+K\nO+YTCtmoVEG/Hhic93pQ0rZPRMwFUnliiKTmiGhIY1/VoLcdL/iYewsfc2mUauhmOTBM0lBJhwGX\nA0tK1JeZmR1ASc7oI2K3pGuBXwCHAvMiYnUp+jIzswMr2Rh9RDwGPFaq/e+ntz00trcdL/iYewsf\ncwkoIkrdh5mZVZCnQDAzy7iqCfquplSQdLikRcn6X0mqK3+V6SrgmP9G0hpJLZKelFTQrVYHs0Kn\nzpD0JUkhqerv0CjkmCVNSn7WqyX9c7lrTFsB/7aHSFom6dfJv+9xlagzLZLmSdooaVUn6yXpzuS/\nR4uk0akWEBEH/Re5C7rrgBOBw4DfAMP322YGMCdZvhxYVOm6y3DM5wIfT5b/qjccc7LdkcAzQBPQ\nUOm6y/BzHgb8GhiQvP6zStddhmOeC/xVsjwcaK103UUe89nAaGBVJ+vHAf8OCGgEfpVm/9VyRl/I\nlAoTgQXJ8kPAeZJUxhrT1uUxR8SyiNiRvGwi93mFalbo1Bk3Az8AdpWzuBIp5JivBv4pIt4BiIiN\nZa4xbYUccwBHJcv9gf9bxvpSFxHPAJsPsMlE4P7IaQKOlnRcWv1XS9AXMqXCvm0iYjewFTimLNWV\nRnenkZhG7oygmnV5zMmftIMj4n+Xs7ASKuTnfDJwsqTnJTVJuqhs1ZVGIcc8C/hLSW3k7t77b+Up\nrWJKOm1MxaZAsPRI+kugAfhcpWspJUmHALcDUytcSrn1ITd8cw65v9qekfSZiNhS0apKazIwPyJu\nk3Qm8BNJIyNiT6ULq0bVckbf5ZQK+dtI6kPuz732slRXGoUcM5LOB/4WmBAR75WptlLp6piPBEYC\nT0lqJTeWuaTKL8gW8nNuA5ZExPsR8XvgFXLBX60KOeZpwIMAEfEfQA25OWGyqqD/33uqWoK+kCkV\nlgBTkuUvA7+M5CpHlerymCWdCtxDLuSrfdwWujjmiNgaEbURURcRdeSuS0yIiObKlJuKQv5tP0Lu\nbB5JteSGcl4rZ5EpK+SY3wDOA5B0Crmg31TWKstrCXBlcvdNI7A1IjaktfOqGLqJTqZUkHQT0BwR\nS4B7yf15t5bcRY/LK1dx8Qo85n8A+gH/mlx3fiMiJlSs6CIVeMyZUuAx/wK4UNIa4APgf0RE1f61\nWuAxfx34saTryV2YnVrNJ26SFpL7ZV2bXHf4LtAXICLmkLsOMQ5YC+wAvpJq/1X8387MzApQLUM3\nZmbWQw56M7OMc9CbmWWcg97MLOMc9GZmGeegNzPLOAe9mVnGOejNzDLu/wEoYy5gP1RbhQAAAABJ\nRU5ErkJggg==\n", |
197 | 196 | "text/plain": [ |
198 | | - "<matplotlib.figure.Figure at 0x115467198>" |
| 197 | + "<matplotlib.figure.Figure at 0x10ad3fd68>" |
199 | 198 | ] |
200 | 199 | }, |
201 | 200 | "metadata": {}, |
|
209 | 208 | "plt.legend();" |
210 | 209 | ] |
211 | 210 | }, |
212 | | - { |
213 | | - "cell_type": "code", |
214 | | - "execution_count": 133, |
215 | | - "metadata": { |
216 | | - "autoscroll": false, |
217 | | - "collapsed": false, |
218 | | - "ein.tags": "worksheet-0", |
219 | | - "slideshow": { |
220 | | - "slide-type": "-" |
221 | | - } |
222 | | - }, |
223 | | - "outputs": [ |
224 | | - { |
225 | | - "data": { |
226 | | - "text/plain": [ |
227 | | - "0.50449999999999995" |
228 | | - ] |
229 | | - }, |
230 | | - "execution_count": 133, |
231 | | - "metadata": {}, |
232 | | - "output_type": "execute_result" |
233 | | - } |
234 | | - ], |
235 | | - "source": [ |
236 | | - "def naive_predict(X):\n", |
237 | | - " return np.abs(X - 0.5) < 0.2\n", |
238 | | - "\n", |
239 | | - "all_data = np.concatenate((real_data, forge_data))\n", |
240 | | - "all_labels = [1] * 1000 + [0] * 1000\n", |
241 | | - "metrics.accuracy_score(all_labels, naive_predict(all_data))" |
242 | | - ] |
243 | | - }, |
244 | | - { |
245 | | - "cell_type": "code", |
246 | | - "execution_count": 134, |
247 | | - "metadata": { |
248 | | - "autoscroll": false, |
249 | | - "collapsed": false, |
250 | | - "ein.tags": "worksheet-0", |
251 | | - "slideshow": { |
252 | | - "slide-type": "-" |
253 | | - } |
254 | | - }, |
255 | | - "outputs": [], |
256 | | - "source": [ |
257 | | - "from sklearn.ensemble import RandomForestClassifier\n", |
258 | | - "model = RandomForestClassifier()\n", |
259 | | - "model.fit(all_data[:, np.newaxis], all_labels)\n", |
260 | | - "pred_res = model.predict(all_data[:, np.newaxis])" |
261 | | - ] |
262 | | - }, |
263 | | - { |
264 | | - "cell_type": "code", |
265 | | - "execution_count": 135, |
266 | | - "metadata": { |
267 | | - "autoscroll": false, |
268 | | - "collapsed": false, |
269 | | - "ein.tags": "worksheet-0", |
270 | | - "slideshow": { |
271 | | - "slide-type": "-" |
272 | | - } |
273 | | - }, |
274 | | - "outputs": [ |
275 | | - { |
276 | | - "data": { |
277 | | - "text/plain": [ |
278 | | - "0.94750000000000001" |
279 | | - ] |
280 | | - }, |
281 | | - "execution_count": 135, |
282 | | - "metadata": {}, |
283 | | - "output_type": "execute_result" |
284 | | - } |
285 | | - ], |
286 | | - "source": [ |
287 | | - "metrics.accuracy_score(all_labels, pred_res)" |
288 | | - ] |
289 | | - }, |
290 | 211 | { |
291 | 212 | "cell_type": "code", |
292 | 213 | "execution_count": null, |
|
0 commit comments