Skip to content

Commit 70d662b

Browse files
committed
removed random_weights and substituted with np.random.uniform
1 parent cc307c7 commit 70d662b

File tree

4 files changed

+2
-16
lines changed

4 files changed

+2
-16
lines changed

deep_learning4e.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -82,7 +82,7 @@ def __init__(self, in_size=3, out_size=3, activation=Sigmoid):
8282
self.activation = activation()
8383
# initialize weights
8484
for node in self.nodes:
85-
node.weights = random_weights(-0.5, 0.5, in_size)
85+
node.weights = np.random.uniform(-0.5, 0.5, in_size)
8686

8787
def forward(self, inputs):
8888
self.inputs = inputs

learning4e.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -567,7 +567,7 @@ def __init__(self, l_rate=0.01, epochs=1000, optimizer='bfgs'):
567567

568568
def fit(self, X, y):
569569
loss = MeanSquaredError(X, y)
570-
self.w = minimize(fun=loss.function, x0=np.zeros((X.shape[1], 1)),method=self.optimizer, jac=loss.jacobian).x
570+
self.w = minimize(fun=loss.function, x0=np.zeros((X.shape[1], 1)), method=self.optimizer, jac=loss.jacobian).x
571571
return self
572572

573573
def predict(self, example):

tests/test_learning4e.py

Lines changed: 0 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -123,16 +123,6 @@ def test_random_forest():
123123
assert grade_learner(rf, tests) >= 1 / 3
124124

125125

126-
def test_random_weights():
127-
min_value = -0.5
128-
max_value = 0.5
129-
num_weights = 10
130-
test_weights = random_weights(min_value, max_value, num_weights)
131-
assert len(test_weights) == num_weights
132-
for weight in test_weights:
133-
assert min_value <= weight <= max_value
134-
135-
136126
def test_ada_boost():
137127
iris = DataSet(name='iris')
138128
iris.classes_to_numbers()

utils4e.py

Lines changed: 0 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -357,10 +357,6 @@ def normalize(dist):
357357
return [(n / total) for n in dist]
358358

359359

360-
def random_weights(min_value, max_value, num_weights):
361-
return [random.uniform(min_value, max_value) for _ in range(num_weights)]
362-
363-
364360
def conv1D(x, k):
365361
"""1D convolution. x: input vector; K: kernel vector."""
366362
return np.convolve(x, k, mode='same')

0 commit comments

Comments
 (0)