|
| 1 | +# Random Forest Regressor Example |
| 2 | + |
| 3 | +from sklearn.datasets import load_boston |
| 4 | +from sklearn.model_selection import train_test_split |
| 5 | +from sklearn.ensemble import RandomForestRegressor |
| 6 | +from sklearn.metrics import mean_absolute_error |
| 7 | +from sklearn.metrics import mean_squared_error |
| 8 | + |
| 9 | + |
| 10 | +def main(): |
| 11 | + |
| 12 | + """ |
| 13 | + Random Tree Regressor Example using sklearn function. |
| 14 | + Boston house price dataset is used to demonstrate algorithm. |
| 15 | + """ |
| 16 | + |
| 17 | + # Load Boston house price dataset |
| 18 | + boston = load_boston() |
| 19 | + print(boston.keys()) |
| 20 | + |
| 21 | + # Split dataset into train and test data |
| 22 | + X = boston["data"] # features |
| 23 | + Y = boston["target"] |
| 24 | + x_train, x_test, y_train, y_test = train_test_split( |
| 25 | + X, Y, test_size=0.3, random_state=1 |
| 26 | + ) |
| 27 | + |
| 28 | + # Random Forest Regressor |
| 29 | + rand_for = RandomForestRegressor(random_state=42, n_estimators=300) |
| 30 | + rand_for.fit(x_train, y_train) |
| 31 | + |
| 32 | + # Predict target for test data |
| 33 | + predictions = rand_for.predict(x_test) |
| 34 | + predictions = predictions.reshape(len(predictions), 1) |
| 35 | + |
| 36 | + # Error printing |
| 37 | + print(f"Mean Absolute Error:\t {mean_absolute_error(y_test, predictions)}") |
| 38 | + print(f"Mean Square Error :\t {mean_squared_error(y_test, predictions)}") |
| 39 | + |
| 40 | + |
| 41 | +if __name__ == "__main__": |
| 42 | + main() |
0 commit comments