6
6
import urllib .request
7
7
import zipfile
8
8
import collections
9
+ import time
9
10
10
11
import pandas
11
12
import numpy
@@ -108,6 +109,8 @@ def download_progress(count, blocksize, totalsize):
108
109
109
110
def load_sample (sample , settings , feature_dir , window_frames ,
110
111
start_time = None , augment = None , normalize = 'meanstd' ):
112
+ start_t = time .time ()
113
+
111
114
n_mels = settings ['n_mels' ]
112
115
sample_rate = settings ['samplerate' ]
113
116
hop_length = settings ['hop_length' ]
@@ -121,7 +124,12 @@ def load_sample(sample, settings, feature_dir, window_frames,
121
124
# Load precomputed features
122
125
folder = os .path .join (feature_dir , settings_id (settings ))
123
126
path = feature_path (sample , out_folder = folder , augmentation = aug )
127
+
128
+
129
+ before_load = time .time ()
124
130
mels = numpy .load (path )['arr_0' ]
131
+ after_load = time .time ()
132
+
125
133
assert mels .shape [0 ] == n_mels , mels .shape
126
134
127
135
if start_time is None :
@@ -161,6 +169,11 @@ def load_sample(sample, settings, feature_dir, window_frames,
161
169
162
170
# add channel dimension
163
171
data = numpy .expand_dims (padded , - 1 )
172
+
173
+ end_t = time .time ()
174
+
175
+ #print(f'load feature {(end_t-start_t)*1000}, {(after_load-before_load)*1000}')
176
+
164
177
return data
165
178
166
179
0 commit comments