|
| 1 | +import torch |
| 2 | +from transformers import MBartPreTrainedModel, RobertaConfig |
| 3 | +import torch.nn as nn |
| 4 | +from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple, Union |
| 5 | +from petl.petl_factory import Prefix, MLP_Bias, Bias, PrefixDirectInit, PrefixCrossAttn |
| 6 | +from transformers.utils import logging |
| 7 | +logger = logging.get_logger(__name__) |
| 8 | + |
| 9 | + |
| 10 | +class PETLEncModel(MBartPreTrainedModel): |
| 11 | + def __init__(self, config, args, pretrained_model, **kwargs): |
| 12 | + super().__init__(config) |
| 13 | + self.args = args |
| 14 | + self.pretrained_model = pretrained_model |
| 15 | + |
| 16 | + if isinstance(config, RobertaConfig): |
| 17 | + self.match_n_layer = config.num_hidden_layers |
| 18 | + self.match_n_head = config.num_attention_heads |
| 19 | + self.n_embd = config.hidden_size |
| 20 | + else: |
| 21 | + self.match_n_layer = config.decoder_layers |
| 22 | + self.match_n_head = config.decoder_attention_heads |
| 23 | + self.n_embd = config.d_model |
| 24 | + self.match_n_embd = self.n_embd // self.match_n_head |
| 25 | + |
| 26 | + if "prefix" in args.attn_mode: |
| 27 | + self.setup_prefix(args, config) |
| 28 | + elif args.attn_mode == 'bitfit' or args.attn_mode == 'adapter': |
| 29 | + self.get_prompt = self.get_fake_prompt |
| 30 | + elif args.attn_mode == 'none': |
| 31 | + # includes only with ffn mode |
| 32 | + self.get_prompt = self.get_fake_prompt |
| 33 | + elif args.attn_mode == "prompt_tuning": |
| 34 | + self.get_prompt = self.get_fake_prompt |
| 35 | + elif args.attn_mode == "lora": |
| 36 | + self.get_prompt = self.get_fake_prompt |
| 37 | + else: |
| 38 | + raise ValueError |
| 39 | + |
| 40 | + logger.info("Declare PrefixTuning model!") |
| 41 | + |
| 42 | + not_freeze_set = [] |
| 43 | + if args.unfreeze_params != 'none' and args.attn_mode != 'bitfit': |
| 44 | + if args.unfreeze_params == 'LN': |
| 45 | + # not_freeze_set = ['layernorm'] # input layernorm |
| 46 | + not_freeze_set = ['attn_layer_norm'] # only optimize layer norm after attn |
| 47 | + else: |
| 48 | + not_freeze_set = args.unfreeze_params.split(',') |
| 49 | + all_match = False |
| 50 | + elif args.attn_mode == 'bitfit': |
| 51 | + not_freeze_set = ['bias'] |
| 52 | + all_match = True |
| 53 | + |
| 54 | + logger.info(not_freeze_set) |
| 55 | + |
| 56 | + freeze_set = [] |
| 57 | + if args.ffn_mode == 'mh_adapter_random' or args.attn_option == 'mh_adapter': |
| 58 | + # freeze the random mapping matrix |
| 59 | + freeze_set = ['freeze_q_proj'] |
| 60 | + |
| 61 | + for n, p in self.pretrained_model.named_parameters(): |
| 62 | + if len(not_freeze_set) > 0 and self.check_params(n, not_freeze_set, all_match=all_match): |
| 63 | + print("tune "+ n) |
| 64 | + p.requires_grad = True |
| 65 | + else: |
| 66 | + p.requires_grad = False |
| 67 | + |
| 68 | + if len(freeze_set) > 0 and self.check_params(n, freeze_set, all_match=False): |
| 69 | + p.requires_grad = False |
| 70 | + |
| 71 | + logger.info("already freezed parameters!") |
| 72 | + |
| 73 | + def check_params(self, module_name, safe_list, all_match=True): |
| 74 | + check = [partial_name in module_name for partial_name in safe_list] |
| 75 | + return all(check) if all_match else any(check) |
| 76 | + |
| 77 | + def get_standard_prompt(self, bsz, nsamples=1): |
| 78 | + return self.prompt_model(bsz, nsamples, self.device) |
| 79 | + |
| 80 | + def setup_prefix(self, args, config): |
| 81 | + if args.attn_mode == "prefix_nomlp": |
| 82 | + self.prompt_model = PrefixDirectInit(args, config) |
| 83 | + else: |
| 84 | + self.prompt_model = Prefix(args, config) |
| 85 | + self.get_prompt = self.get_standard_prompt |
| 86 | + |
| 87 | + def setup_bias(self, args, config): |
| 88 | + self.prompt_model = Bias(args, config) |
| 89 | + self.get_prompt = self.get_standard_prompt |
| 90 | + |
| 91 | + def setup_bias_mlp(self, args, config): |
| 92 | + self.prompt_model = MLP_Bias(args, config) |
| 93 | + self.get_prompt = self.get_standard_prompt |
| 94 | + |
| 95 | + def get_fake_prompt(self, bsz, nsamples=-1): |
| 96 | + return None |
| 97 | + |
| 98 | + def forward(self, |
| 99 | + input_ids=None, |
| 100 | + attention_mask=None, |
| 101 | + token_type_ids=None, |
| 102 | + position_ids=None, |
| 103 | + head_mask=None, |
| 104 | + inputs_embeds=None, |
| 105 | + labels=None, |
| 106 | + output_attentions=None, |
| 107 | + output_hidden_states=None, |
| 108 | + return_dict=None, |
| 109 | + ): |
| 110 | + |
| 111 | + bsz = input_ids.shape[0] |
| 112 | + prefix_state = self.get_prompt(bsz=bsz) |
| 113 | + |
| 114 | + output = self.pretrained_model(input_ids=input_ids, |
| 115 | + attention_mask=attention_mask, |
| 116 | + token_type_ids=token_type_ids, |
| 117 | + position_ids=position_ids, |
| 118 | + head_mask=head_mask, |
| 119 | + inputs_embeds=inputs_embeds, |
| 120 | + labels=labels, |
| 121 | + output_attentions=output_attentions, |
| 122 | + output_hidden_states=output_hidden_states, |
| 123 | + return_dict=return_dict, |
| 124 | + prefix_state=prefix_state, |
| 125 | + ) |
| 126 | + return output |
0 commit comments