|
| 1 | +package stack; |
| 2 | + |
| 3 | +import java.util.Stack; |
| 4 | + |
| 5 | +/** |
| 6 | + * Created by gouthamvidyapradhan on 29/11/2017. |
| 7 | + * |
| 8 | + * Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing only 1's and return its area. |
| 9 | +
|
| 10 | + For example, given the following matrix: |
| 11 | +
|
| 12 | + 1 0 1 0 0 |
| 13 | + 1 0 1 1 1 |
| 14 | + 1 1 1 1 1 |
| 15 | + 1 0 0 1 0 |
| 16 | + Return 6. |
| 17 | +
|
| 18 | + Solution O(n * m): This problem is similar to LargestRectangleInHistogram. |
| 19 | + Run the largest rectangle in histogram algorithm for each row. |
| 20 | + */ |
| 21 | +public class MaximalRectangle { |
| 22 | + |
| 23 | + /** |
| 24 | + * Main method |
| 25 | + * @param args |
| 26 | + * @throws Exception |
| 27 | + */ |
| 28 | + public static void main(String[] args) throws Exception{ |
| 29 | + char[][] matrix = {{'1','0','1','0','0'}, {'1', '0', '1', '1', '1'}, {'1', '1', '1', '1', '1'}, |
| 30 | + {'1', '0', '0', '1', '0'}}; |
| 31 | + System.out.println(new MaximalRectangle().maximalRectangle(matrix)); |
| 32 | + } |
| 33 | + |
| 34 | + public int maximalRectangle(char[][] matrix) { |
| 35 | + if(matrix.length == 0 || matrix[0].length == 0) return 0; |
| 36 | + int[] A = new int[matrix[0].length]; |
| 37 | + int max = Integer.MIN_VALUE; |
| 38 | + for(int i = 0; i < matrix.length; i ++){ |
| 39 | + for(int j = 0; j < matrix[0].length; j++){ |
| 40 | + if(matrix[i][j] == '1'){ |
| 41 | + if(i > 0 && matrix[i - 1][j] == '1'){ |
| 42 | + A[j] = A[j] + 1; |
| 43 | + } else{ |
| 44 | + A[j] = 1; |
| 45 | + } |
| 46 | + } else { |
| 47 | + A[j] = 0; |
| 48 | + } |
| 49 | + } |
| 50 | + //calculate max rectangle for this row |
| 51 | + max = Math.max(max, getMaxRectangle(A)); |
| 52 | + } |
| 53 | + return max; |
| 54 | + } |
| 55 | + |
| 56 | + /** |
| 57 | + * Get max rectangle algorithm similar to max rectangle in histogram |
| 58 | + * @param heights |
| 59 | + * @return |
| 60 | + */ |
| 61 | + private int getMaxRectangle(int[] heights){ |
| 62 | + int maxArea = Integer.MIN_VALUE; |
| 63 | + Stack<Integer> stack = new Stack<>(); |
| 64 | + int i = 0; |
| 65 | + for (; i < heights.length; i++) { |
| 66 | + while (!stack.isEmpty() && heights[stack.peek()] >= heights[i]) { |
| 67 | + int top = stack.pop(); |
| 68 | + int base = stack.isEmpty() ? i : i - stack.peek() - 1; |
| 69 | + maxArea = Math.max(maxArea, base * heights[top]); |
| 70 | + } |
| 71 | + stack.push(i); |
| 72 | + } |
| 73 | + while (!stack.isEmpty()) { |
| 74 | + int top = stack.pop(); |
| 75 | + int base = stack.isEmpty() ? i : i - stack.peek() - 1; |
| 76 | + maxArea = Math.max(maxArea, base * heights[top]); |
| 77 | + } |
| 78 | + return maxArea; |
| 79 | + } |
| 80 | +} |
0 commit comments