diff --git a/docs/source/datasets.rst b/docs/source/datasets.rst index af782bca03..df6af5fccb 100644 --- a/docs/source/datasets.rst +++ b/docs/source/datasets.rst @@ -62,6 +62,11 @@ MRPC .. autofunction:: MRPC +QQP +~~~~ + +.. autofunction:: QQP + SogouNews ~~~~~~~~~ diff --git a/test/datasets/test_qqp.py b/test/datasets/test_qqp.py new file mode 100644 index 0000000000..4c782040ea --- /dev/null +++ b/test/datasets/test_qqp.py @@ -0,0 +1,61 @@ +import os +from unittest.mock import patch + +from torchtext.datasets.qqp import QQP + +from ..common.case_utils import TempDirMixin, zip_equal, get_random_unicode +from ..common.torchtext_test_case import TorchtextTestCase + + +def _get_mock_dataset(root_dir): + """ + root_dir: directory to the mocked dataset + """ + base_dir = os.path.join(root_dir, "QQP") + os.makedirs(base_dir, exist_ok=True) + + seed = 1 + file_name = "quora_duplicate_questions.tsv" + txt_file = os.path.join(base_dir, file_name) + mocked_data = [] + print(txt_file) + with open(txt_file, "w", encoding="utf-8") as f: + f.write("id\tqid1\tqid2\tquestion1\tquestion2\tis_duplicate\n") + for i in range(5): + label = seed % 2 + rand_string_1 = get_random_unicode(seed) + rand_string_2 = get_random_unicode(seed + 1) + dataset_line = (label, rand_string_1, rand_string_2) + # append line to correct dataset split + mocked_data.append(dataset_line) + f.write(f"{i}\t{i}\t{i}\t{rand_string_1}\t{rand_string_2}\t{label}\n") + seed += 1 + + return mocked_data + + +class TestQQP(TempDirMixin, TorchtextTestCase): + root_dir = None + samples = [] + + @classmethod + def setUpClass(cls): + super().setUpClass() + cls.root_dir = cls.get_base_temp_dir() + print(cls.root_dir) + cls.samples = _get_mock_dataset(cls.root_dir) + cls.patcher = patch("torchdata.datapipes.iter.util.cacheholder._hash_check", return_value=True) + cls.patcher.start() + + @classmethod + def tearDownClass(cls): + cls.patcher.stop() + super().tearDownClass() + + def test_qqp(self): + dataset = QQP(root=self.root_dir) + + samples = list(dataset) + expected_samples = self.samples + for sample, expected_sample in zip_equal(samples, expected_samples): + self.assertEqual(sample, expected_sample) diff --git a/torchtext/datasets/__init__.py b/torchtext/datasets/__init__.py index b228e773b4..fd49915f58 100644 --- a/torchtext/datasets/__init__.py +++ b/torchtext/datasets/__init__.py @@ -14,6 +14,7 @@ from .mrpc import MRPC from .multi30k import Multi30k from .penntreebank import PennTreebank +from .qqp import QQP from .sogounews import SogouNews from .squad1 import SQuAD1 from .squad2 import SQuAD2 @@ -40,6 +41,7 @@ "MRPC": MRPC, "Multi30k": Multi30k, "PennTreebank": PennTreebank, + "QQP": QQP, "SQuAD1": SQuAD1, "SQuAD2": SQuAD2, "SogouNews": SogouNews, diff --git a/torchtext/datasets/qqp.py b/torchtext/datasets/qqp.py new file mode 100644 index 0000000000..387cbffaa5 --- /dev/null +++ b/torchtext/datasets/qqp.py @@ -0,0 +1,53 @@ +import os + +from torchtext._internal.module_utils import is_module_available +from torchtext.data.datasets_utils import _create_dataset_directory + +if is_module_available("torchdata"): + from torchdata.datapipes.iter import FileOpener, IterableWrapper + from torchtext._download_hooks import HttpReader + +URL = "http://qim.fs.quoracdn.net/quora_duplicate_questions.tsv" + +MD5 = "b6d5672bd9dc1e66ab2bb020ebeafb8d" + +_PATH = "quora_duplicate_questions.tsv" + +NUM_LINES = {"train": 404290} + +DATASET_NAME = "QQP" + + +@_create_dataset_directory(dataset_name=DATASET_NAME) +def QQP(root: str): + """QQP dataset + For additional details refer to https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs + + Args: + root: Directory where the datasets are saved. Default: os.path.expanduser('~/.torchtext/cache') + + :returns: DataPipe that yields rows from QQP dataset (label (int), question1 (str), question2 (str)) + :rtype: (int, str, str) + """ + if not is_module_available("torchdata"): + raise ModuleNotFoundError( + "Package `torchdata` not found. Please install following instructions at `https://github.com/pytorch/data`" + ) + + def _filepath_fn(_=None): + return os.path.join(root, _PATH) + + def _modify_res(x): + return (int(x[-1]), x[3], x[4]) + + url_dp = IterableWrapper([URL]) + cache_dp = url_dp.on_disk_cache( + filepath_fn=_filepath_fn, + hash_dict={_filepath_fn(): MD5}, + hash_type="md5", + ) + cache_dp = HttpReader(cache_dp).end_caching(mode="wb", same_filepath_fn=True) + cache_dp = FileOpener(cache_dp, encoding="utf-8") + # some context stored at top of the file needs to be removed + parsed_data = cache_dp.parse_csv(skip_lines=1, delimiter="\t").map(_modify_res) + return parsed_data.shuffle().set_shuffle(False).sharding_filter()