|
1 | 1 |
|
2 |
| - |
3 |
| -## 1 使用net.py |
| 2 | +## 1 使用cnn_lenet.py |
4 | 3 | ```bash
|
5 |
| -Accuracy of the network on the 10000 test images : 59 % |
6 |
| -[10, 2000] loss: 0.801 |
7 |
| -Accuracy of the network on the 10000 test images : 61 % |
8 |
| -[10, 4000] loss: 0.845 |
9 |
| -Accuracy of the network on the 10000 test images : 62 % |
10 |
| -[10, 6000] loss: 0.859 |
11 |
| -Accuracy of the network on the 10000 test images : 60 % |
12 |
| -[10, 8000] loss: 0.876 |
13 |
| -Accuracy of the network on the 10000 test images : 61 % |
14 |
| -[10, 10000] loss: 0.885 |
15 |
| -Accuracy of the network on the 10000 test images : 61 % |
16 |
| -[10, 12000] loss: 0.881 |
17 |
| -Accuracy of the network on the 10000 test images : 62 % |
| 4 | +2021-08-07 03:17:48 [10, 2000] train acc: 0.889 loss: 0.308 ; val acc: 0.694 loss: 0.299 lr: 0.001 |
| 5 | +2021-08-07 03:18:07 [10, 4000] train acc: 0.869 loss: 0.356 ; val acc: 0.689 loss: 0.295 lr: 0.001 |
| 6 | +2021-08-07 03:18:26 [10, 6000] train acc: 0.863 loss: 0.387 ; val acc: 0.678 loss: 0.307 lr: 0.001 |
| 7 | +2021-08-07 03:18:46 [10, 8000] train acc: 0.856 loss: 0.414 ; val acc: 0.680 loss: 0.303 lr: 0.001 |
| 8 | +2021-08-07 03:19:06 [10, 10000] train acc: 0.848 loss: 0.431 ; val acc: 0.689 loss: 0.295 lr: 0.001 |
| 9 | +2021-08-07 03:19:25 [10, 12000] train acc: 0.844 loss: 0.445 ; val acc: 0.678 loss: 0.295 lr: 0.001 |
18 | 10 | Finished Training
|
19 |
| -GroundTruth: cat ship ship plane |
20 |
| -Accuracy of plane : 73 % |
21 |
| -Accuracy of car : 78 % |
22 |
| -Accuracy of bird : 47 % |
23 |
| -Accuracy of cat : 47 % |
24 |
| -Accuracy of deer : 55 % |
25 |
| -Accuracy of dog : 52 % |
26 |
| -Accuracy of frog : 74 % |
27 |
| -Accuracy of horse : 67 % |
28 |
| -Accuracy of ship : 66 % |
29 |
| -Accuracy of truck : 61 % |
30 |
| -``` |
31 |
| - |
32 |
| - |
33 |
| - |
34 |
| -## 2 使用cnn_net.py |
35 |
| -```bash |
36 |
| -[10, 2000] loss: 0.291 |
37 |
| -Accuracy of the network on the 10000 test images : 68 % |
38 |
| -[10, 4000] loss: 0.321 |
39 |
| -Accuracy of the network on the 10000 test images : 69 % |
40 |
| -[10, 6000] loss: 0.353 |
41 |
| -Accuracy of the network on the 10000 test images : 68 % |
42 |
| -[10, 8000] loss: 0.398 |
43 |
| -Accuracy of the network on the 10000 test images : 67 % |
44 |
| -[10, 10000] loss: 0.445 |
45 |
| -Accuracy of the network on the 10000 test images : 67 % |
46 |
| -[10, 12000] loss: 0.438 |
47 |
| -Accuracy of the network on the 10000 test images : 68 % |
48 |
| -Finished Training |
49 |
| -GroundTruth: cat ship ship plane |
50 |
| -Accuracy of plane : 62 % |
51 |
| -Accuracy of car : 77 % |
52 |
| -Accuracy of bird : 58 % |
53 |
| -Accuracy of cat : 51 % |
54 |
| -Accuracy of deer : 65 % |
55 |
| -Accuracy of dog : 61 % |
| 11 | +Accuracy of plane : 72 % |
| 12 | +Accuracy of car : 84 % |
| 13 | +Accuracy of bird : 61 % |
| 14 | +Accuracy of cat : 45 % |
| 15 | +Accuracy of deer : 56 % |
| 16 | +Accuracy of dog : 59 % |
56 | 17 | Accuracy of frog : 80 %
|
57 |
| -Accuracy of horse : 70 % |
58 |
| -Accuracy of ship : 80 % |
59 |
| -Accuracy of truck : 80 % |
| 18 | +Accuracy of horse : 72 % |
| 19 | +Accuracy of ship : 81 % |
| 20 | +Accuracy of truck : 68 % |
60 | 21 | ```
|
61 | 22 |
|
62 |
| -## 3 使用net_gap.py |
| 23 | +## 2 使用net_gap.py |
63 | 24 | ```bash
|
64 |
| -[10, 2000] loss: 1.008 |
65 |
| -Accuracy of the network on the 10000 test images : 62 % |
66 |
| -[10, 4000] loss: 0.990 |
67 |
| -Accuracy of the network on the 10000 test images : 64 % |
68 |
| -[10, 6000] loss: 0.993 |
69 |
| -Accuracy of the network on the 10000 test images : 63 % |
70 |
| -[10, 8000] loss: 0.978 |
71 |
| -Accuracy of the network on the 10000 test images : 64 % |
72 |
| -[10, 10000] loss: 0.991 |
73 |
| -Accuracy of the network on the 10000 test images : 63 % |
74 |
| -[10, 12000] loss: 0.998 |
75 |
| -Accuracy of the network on the 10000 test images : 64 % |
| 25 | +2021-08-07 03:19:08 [10, 2000] train acc: 0.651 loss: 1.004 ; val acc: 0.616 loss: 0.272 lr: 0.001 |
| 26 | +2021-08-07 03:19:27 [10, 4000] train acc: 0.655 loss: 0.982 ; val acc: 0.650 loss: 0.253 lr: 0.001 |
| 27 | +2021-08-07 03:19:45 [10, 6000] train acc: 0.653 loss: 0.993 ; val acc: 0.629 loss: 0.264 lr: 0.001 |
| 28 | +2021-08-07 03:20:04 [10, 8000] train acc: 0.637 loss: 1.015 ; val acc: 0.633 loss: 0.265 lr: 0.001 |
| 29 | +2021-08-07 03:20:22 [10, 10000] train acc: 0.656 loss: 0.984 ; val acc: 0.634 loss: 0.259 lr: 0.001 |
| 30 | +2021-08-07 03:20:41 [10, 12000] train acc: 0.665 loss: 0.971 ; val acc: 0.623 loss: 0.268 lr: 0.001 |
76 | 31 | Finished Training
|
77 |
| -Accuracy of plane : 76 % |
78 |
| -Accuracy of car : 84 % |
79 |
| -Accuracy of bird : 42 % |
80 |
| -Accuracy of cat : 25 % |
81 |
| -Accuracy of deer : 41 % |
82 |
| -Accuracy of dog : 65 % |
83 |
| -Accuracy of frog : 84 % |
84 |
| -Accuracy of horse : 56 % |
85 |
| -Accuracy of ship : 74 % |
86 |
| -Accuracy of truck : 72 % |
| 32 | +Accuracy of plane : 64 % |
| 33 | +Accuracy of car : 57 % |
| 34 | +Accuracy of bird : 34 % |
| 35 | +Accuracy of cat : 44 % |
| 36 | +Accuracy of deer : 39 % |
| 37 | +Accuracy of dog : 63 % |
| 38 | +Accuracy of frog : 75 % |
| 39 | +Accuracy of horse : 71 % |
| 40 | +Accuracy of ship : 80 % |
| 41 | +Accuracy of truck : 90 % |
87 | 42 | ```
|
88 | 43 |
|
89 | 44 |
|
90 |
| -## 4 vgg.py |
| 45 | +## 3 vgg.py |
91 | 46 | ```bash
|
92 |
| -Accuracy of the network on the 10000 test images : 82 % |
93 |
| -[10, 2000] loss: 0.190 |
94 |
| -Accuracy of the network on the 10000 test images : 81 % |
95 |
| -[10, 4000] loss: 0.201 |
96 |
| -Accuracy of the network on the 10000 test images : 82 % |
97 |
| -[10, 6000] loss: 0.214 |
98 |
| -Accuracy of the network on the 10000 test images : 82 % |
99 |
| -[10, 8000] loss: 0.210 |
100 |
| -Accuracy of the network on the 10000 test images : 82 % |
101 |
| -[10, 10000] loss: 0.215 |
102 |
| -Accuracy of the network on the 10000 test images : 81 % |
103 |
| -[10, 12000] loss: 0.229 |
104 |
| -Accuracy of the network on the 10000 test images : 81 % |
| 47 | +2021-08-07 04:01:42 [10, 2000] train acc: 0.948 loss: 0.156 ; val acc: 0.828 loss: 0.159 lr: 0.001 |
| 48 | +2021-08-07 04:02:41 [10, 4000] train acc: 0.946 loss: 0.158 ; val acc: 0.828 loss: 0.158 lr: 0.001 |
| 49 | +2021-08-07 04:03:41 [10, 6000] train acc: 0.945 loss: 0.170 ; val acc: 0.829 loss: 0.154 lr: 0.001 |
| 50 | +2021-08-07 04:04:40 [10, 8000] train acc: 0.939 loss: 0.174 ; val acc: 0.822 loss: 0.162 lr: 0.001 |
| 51 | +2021-08-07 04:05:40 [10, 10000] train acc: 0.941 loss: 0.175 ; val acc: 0.821 loss: 0.169 lr: 0.001 |
| 52 | +2021-08-07 04:06:40 [10, 12000] train acc: 0.939 loss: 0.188 ; val acc: 0.820 loss: 0.163 lr: 0.001 |
105 | 53 | Finished Training
|
106 |
| -Accuracy of plane : 77 % |
107 |
| -Accuracy of car : 94 % |
108 |
| -Accuracy of bird : 74 % |
109 |
| -Accuracy of cat : 58 % |
110 |
| -Accuracy of deer : 86 % |
111 |
| -Accuracy of dog : 78 % |
112 |
| -Accuracy of frog : 89 % |
113 |
| -Accuracy of horse : 87 % |
114 |
| -Accuracy of ship : 90 % |
115 |
| -Accuracy of truck : 87 % |
| 54 | +Accuracy of plane : 84 % |
| 55 | +Accuracy of car : 89 % |
| 56 | +Accuracy of bird : 68 % |
| 57 | +Accuracy of cat : 77 % |
| 58 | +Accuracy of deer : 79 % |
| 59 | +Accuracy of dog : 75 % |
| 60 | +Accuracy of frog : 81 % |
| 61 | +Accuracy of horse : 89 % |
| 62 | +Accuracy of ship : 89 % |
| 63 | +Accuracy of truck : 93 % |
116 | 64 | ```
|
117 | 65 |
|
0 commit comments