|
1 | | -# coding:UTF-8 |
2 | | -''' |
3 | | -Date:20160805 |
4 | | -@author: zhaozhiyong |
5 | | -''' |
6 | | -import numpy as np |
7 | | - |
8 | | -def load_data(inputfile): |
9 | | - '''导入训练数据 |
10 | | - input: inputfile(string)训练样本的位置 |
11 | | - output: feature_data(mat)特征 |
12 | | - label_data(mat)标签 |
13 | | - k(int)类别的个数 |
14 | | - ''' |
15 | | - f = open(inputfile) # 打开文件 |
16 | | - feature_data = [] |
17 | | - label_data = [] |
18 | | - for line in f.readlines(): |
19 | | - feature_tmp = [] |
20 | | - feature_tmp.append(1) # 偏置项 |
21 | | - lines = line.strip().split("\t") |
22 | | - for i in xrange(len(lines) - 1): |
23 | | - feature_tmp.append(float(lines[i])) |
24 | | - label_data.append(int(lines[-1])) |
25 | | - |
26 | | - feature_data.append(feature_tmp) |
27 | | - f.close() # 关闭文件 |
28 | | - return np.mat(feature_data), np.mat(label_data).T, len(set(label_data)) |
29 | | - |
30 | | -def cost(err, label_data): |
31 | | - '''计算损失函数值 |
32 | | - input: err(mat):exp的值 |
33 | | - label_data(mat):标签的值 |
34 | | - output: sum_cost / m(float):损失函数的值 |
35 | | - ''' |
36 | | - m = np.shape(err)[0] |
37 | | - sum_cost = 0.0 |
38 | | - for i in xrange(m): |
39 | | - if err[i, label_data[i, 0]] / np.sum(err[i, :]) > 0: |
40 | | - sum_cost -= np.log(err[i, label_data[i, 0]] / np.sum(err[i, :])) |
41 | | - else: |
42 | | - sum_cost -= 0 |
43 | | - return sum_cost / m |
44 | | - |
45 | | - |
46 | | -def gradientAscent(feature_data, label_data, k, maxCycle, alpha): |
47 | | - '''利用梯度下降法训练Softmax模型 |
48 | | - input: feature_data(mat):特征 |
49 | | - label_data(mat):标签 |
50 | | - k(int):类别的个数 |
51 | | - maxCycle(int):最大的迭代次数 |
52 | | - alpha(float):学习率 |
53 | | - output: weights(mat):权重 |
54 | | - ''' |
55 | | - m, n = np.shape(feature_data) |
56 | | - weights = np.mat(np.ones((n, k))) # 权重的初始化 |
57 | | - i = 0 |
58 | | - while i <= maxCycle: |
59 | | - err = np.exp(feature_data * weights) |
60 | | - if i % 500 == 0: |
61 | | - print "\t-----iter: ", i , ", cost: ", cost(err, label_data) |
62 | | - rowsum = -err.sum(axis=1) |
63 | | - rowsum = rowsum.repeat(k, axis=1) |
64 | | - err = err / rowsum |
65 | | - for x in range(m): |
66 | | - err[x, label_data[x, 0]] += 1 |
67 | | - weights = weights + (alpha / m) * feature_data.T * err |
68 | | - i += 1 |
69 | | - return weights |
70 | | - |
71 | | -def save_model(file_name, weights): |
72 | | - '''保存最终的模型 |
73 | | - input: file_name(string):保存的文件名 |
74 | | - weights(mat):softmax模型 |
75 | | - ''' |
76 | | - f_w = open(file_name, "w") |
77 | | - m, n = np.shape(weights) |
78 | | - for i in xrange(m): |
79 | | - w_tmp = [] |
80 | | - for j in xrange(n): |
81 | | - w_tmp.append(str(weights[i, j])) |
82 | | - f_w.write("\t".join(w_tmp) + "\n") |
83 | | - f_w.close() |
84 | | - |
85 | | -if __name__ == "__main__": |
86 | | - inputfile = "SoftInput.txt" |
87 | | - # 1、导入训练数据 |
88 | | - print "---------- 1.load data ------------" |
89 | | - feature, label, k = load_data(inputfile) |
90 | | - # 2、训练Softmax模型 |
91 | | - print "---------- 2.training ------------" |
92 | | - weights = gradientAscent(feature, label, k, 10000, 0.4) |
93 | | - # 3、保存最终的模型 |
94 | | - print "---------- 3.save model ------------" |
95 | | - save_model("weights", weights) |
| 1 | +# coding:UTF-8 |
| 2 | +''' |
| 3 | +Date:20160805 |
| 4 | +@author: zhaozhiyong |
| 5 | +''' |
| 6 | +import numpy as np |
| 7 | + |
| 8 | +def load_data(inputfile): |
| 9 | + '''导入训练数据 |
| 10 | + input: inputfile(string)训练样本的位置 |
| 11 | + output: feature_data(mat)特征 |
| 12 | + label_data(mat)标签 |
| 13 | + k(int)类别的个数 |
| 14 | + ''' |
| 15 | + f = open(inputfile) # 打开文件 |
| 16 | + feature_data = [] |
| 17 | + label_data = [] |
| 18 | + for line in f.readlines(): |
| 19 | + feature_tmp = [] |
| 20 | + feature_tmp.append(1) # 偏置项 |
| 21 | + lines = line.strip().split("\t") |
| 22 | + for i in range(len(lines) - 1): |
| 23 | + feature_tmp.append(float(lines[i])) |
| 24 | + label_data.append(int(lines[-1])) |
| 25 | + |
| 26 | + feature_data.append(feature_tmp) |
| 27 | + f.close() # 关闭文件 |
| 28 | + return np.mat(feature_data), np.mat(label_data).T, len(set(label_data)) |
| 29 | + |
| 30 | +def cost(err, label_data): |
| 31 | + '''计算损失函数值 |
| 32 | + input: err(mat):exp的值 |
| 33 | + label_data(mat):标签的值 |
| 34 | + output: sum_cost / m(float):损失函数的值 |
| 35 | + ''' |
| 36 | + m = np.shape(err)[0] |
| 37 | + sum_cost = 0.0 |
| 38 | + for i in range(m): |
| 39 | + if err[i, label_data[i, 0]] / np.sum(err[i, :]) > 0: |
| 40 | + sum_cost -= np.log(err[i, label_data[i, 0]] / np.sum(err[i, :])) |
| 41 | + else: |
| 42 | + sum_cost -= 0 |
| 43 | + return sum_cost / m |
| 44 | + |
| 45 | + |
| 46 | +def gradientAscent(feature_data, label_data, k, maxCycle, alpha): |
| 47 | + '''利用梯度下降法训练Softmax模型 |
| 48 | + input: feature_data(mat):特征 |
| 49 | + label_data(mat):标签 |
| 50 | + k(int):类别的个数 |
| 51 | + maxCycle(int):最大的迭代次数 |
| 52 | + alpha(float):学习率 |
| 53 | + output: weights(mat):权重 |
| 54 | + ''' |
| 55 | + m, n = np.shape(feature_data) |
| 56 | + weights = np.mat(np.ones((n, k))) # 权重的初始化 |
| 57 | + i = 0 |
| 58 | + while i <= maxCycle: |
| 59 | + err = np.exp(feature_data * weights) #得到一个shape(m,k)的mat |
| 60 | + |
| 61 | + if i % 500 == 0: |
| 62 | + print ("\t-----iter: ", i , ", cost: ", cost(err, label_data)) |
| 63 | + rowsum = -err.sum(axis=1) #而当加入axis=1以后就是将一个矩阵的每一行向量相加 |
| 64 | + rowsum = rowsum.repeat(k, axis=1) |
| 65 | + # axis=0,沿着y轴复制,实际上增加了行数,axis=1,沿着x轴复制,实际上增加列数 |
| 66 | + |
| 67 | + err = err / rowsum |
| 68 | + for x in range(m): |
| 69 | + err[x, label_data[x, 0]] += 1 #得到的是标签的类型 |
| 70 | + weights = weights + (alpha / m) * feature_data.T * err |
| 71 | + i += 1 |
| 72 | + return weights |
| 73 | + |
| 74 | +def save_model(file_name, weights): |
| 75 | + '''保存最终的模型 |
| 76 | + input: file_name(string):保存的文件名 |
| 77 | + weights(mat):softmax模型 |
| 78 | + ''' |
| 79 | + f_w = open(file_name, "w") |
| 80 | + m, n = np.shape(weights) |
| 81 | + for i in range(m): |
| 82 | + w_tmp = [] |
| 83 | + for j in range(n): |
| 84 | + w_tmp.append(str(weights[i, j])) |
| 85 | + f_w.write("\t".join(w_tmp) + "\n") |
| 86 | + f_w.close() |
| 87 | + |
| 88 | +if __name__ == "__main__": |
| 89 | + inputfile = "SoftInput.txt" |
| 90 | + # 1、导入训练数据 |
| 91 | + print ("---------- 1.load data ------------") |
| 92 | + feature, label, k = load_data(inputfile) |
| 93 | + # 2、训练Softmax模型 |
| 94 | + print ("---------- 2.training ------------") |
| 95 | + weights = gradientAscent(feature, label, k, 10000, 0.4) |
| 96 | + # 3、保存最终的模型 |
| 97 | + print ("---------- 3.save model ------------") |
| 98 | + save_model("weights", weights) |
0 commit comments