|
1 | | -# coding:UTF-8 |
2 | | -''' |
3 | | -Date:20160923 |
4 | | -@author: zhaozhiyong |
5 | | -''' |
6 | | -import numpy as np |
7 | | - |
8 | | -def load_data(file_path): |
9 | | - '''导入数据 |
10 | | - input: file_path(string):文件的存储位置 |
11 | | - output: data(mat):数据 |
12 | | - ''' |
13 | | - f = open(file_path) |
14 | | - data = [] |
15 | | - for line in f.readlines(): |
16 | | - row = [] # 记录每一行 |
17 | | - lines = line.strip().split("\t") |
18 | | - for x in lines: |
19 | | - row.append(float(x)) # 将文本中的特征转换成浮点数 |
20 | | - data.append(row) |
21 | | - f.close() |
22 | | - return np.mat(data) |
23 | | - |
24 | | -def distance(vecA, vecB): |
25 | | - '''计算vecA与vecB之间的欧式距离的平方 |
26 | | - input: vecA(mat)A点坐标 |
27 | | - vecB(mat)B点坐标 |
28 | | - output: dist[0, 0](float)A点与B点距离的平方 |
29 | | - ''' |
30 | | - dist = (vecA - vecB) * (vecA - vecB).T |
31 | | - return dist[0, 0] |
32 | | - |
33 | | -def randCent(data, k): |
34 | | - '''随机初始化聚类中心 |
35 | | - input: data(mat):训练数据 |
36 | | - k(int):类别个数 |
37 | | - output: centroids(mat):聚类中心 |
38 | | - ''' |
39 | | - n = np.shape(data)[1] # 属性的个数 |
40 | | - centroids = np.mat(np.zeros((k, n))) # 初始化k个聚类中心 |
41 | | - for j in xrange(n): # 初始化聚类中心每一维的坐标 |
42 | | - minJ = np.min(data[:, j]) |
43 | | - rangeJ = np.max(data[:, j]) - minJ |
44 | | - # 在最大值和最小值之间随机初始化 |
45 | | - centroids[:, j] = minJ * np.mat(np.ones((k , 1))) \ |
46 | | - + np.random.rand(k, 1) * rangeJ |
47 | | - return centroids |
48 | | - |
49 | | -def kmeans(data, k, centroids): |
50 | | - '''根据KMeans算法求解聚类中心 |
51 | | - input: data(mat):训练数据 |
52 | | - k(int):类别个数 |
53 | | - centroids(mat):随机初始化的聚类中心 |
54 | | - output: centroids(mat):训练完成的聚类中心 |
55 | | - subCenter(mat):每一个样本所属的类别 |
56 | | - ''' |
57 | | - m, n = np.shape(data) # m:样本的个数,n:特征的维度 |
58 | | - subCenter = np.mat(np.zeros((m, 2))) # 初始化每一个样本所属的类别 |
59 | | - change = True # 判断是否需要重新计算聚类中心 |
60 | | - while change == True: |
61 | | - change = False # 重置 |
62 | | - for i in xrange(m): |
63 | | - minDist = np.inf # 设置样本与聚类中心之间的最小的距离,初始值为正无穷 |
64 | | - minIndex = 0 # 所属的类别 |
65 | | - for j in xrange(k): |
66 | | - # 计算i和每个聚类中心之间的距离 |
67 | | - dist = distance(data[i, ], centroids[j, ]) |
68 | | - if dist < minDist: |
69 | | - minDist = dist |
70 | | - minIndex = j |
71 | | - # 判断是否需要改变 |
72 | | - if subCenter[i, 0] <> minIndex: # 需要改变 |
73 | | - change = True |
74 | | - subCenter[i, ] = np.mat([minIndex, minDist]) |
75 | | - # 重新计算聚类中心 |
76 | | - for j in xrange(k): |
77 | | - sum_all = np.mat(np.zeros((1, n))) |
78 | | - r = 0 # 每个类别中的样本的个数 |
79 | | - for i in xrange(m): |
80 | | - if subCenter[i, 0] == j: # 计算第j个类别 |
81 | | - sum_all += data[i, ] |
82 | | - r += 1 |
83 | | - for z in xrange(n): |
84 | | - try: |
85 | | - centroids[j, z] = sum_all[0, z] / r |
86 | | - except: |
87 | | - print " r is zero" |
88 | | - return subCenter |
89 | | - |
90 | | -def save_result(file_name, source): |
91 | | - '''保存source中的结果到file_name文件中 |
92 | | - input: file_name(string):文件名 |
93 | | - source(mat):需要保存的数据 |
94 | | - output: |
95 | | - ''' |
96 | | - m, n = np.shape(source) |
97 | | - f = open(file_name, "w") |
98 | | - for i in xrange(m): |
99 | | - tmp = [] |
100 | | - for j in xrange(n): |
101 | | - tmp.append(str(source[i, j])) |
102 | | - f.write("\t".join(tmp) + "\n") |
103 | | - f.close() |
104 | | - |
105 | | -if __name__ == "__main__": |
106 | | - k = 4 # 聚类中心的个数 |
107 | | - file_path = "data.txt" |
108 | | - # 1、导入数据 |
109 | | - print "---------- 1.load data ------------" |
110 | | - data = load_data(file_path) |
111 | | - # 2、随机初始化k个聚类中心 |
112 | | - print "---------- 2.random center ------------" |
113 | | - centroids = randCent(data, k) |
114 | | - # 3、聚类计算 |
115 | | - print "---------- 3.kmeans ------------" |
116 | | - subCenter = kmeans(data, k, centroids) |
117 | | - # 4、保存所属的类别文件 |
118 | | - print "---------- 4.save subCenter ------------" |
119 | | - save_result("sub", subCenter) |
120 | | - # 5、保存聚类中心 |
121 | | - print "---------- 5.save centroids ------------" |
122 | | - save_result("center", centroids) |
| 1 | +# coding:UTF-8 |
| 2 | +''' |
| 3 | +Date:20160923 |
| 4 | +@author: zhaozhiyong |
| 5 | +''' |
| 6 | +import numpy as np |
| 7 | + |
| 8 | +def load_data(file_path): |
| 9 | + '''导入数据 |
| 10 | + input: file_path(string):文件的存储位置 |
| 11 | + output: data(mat):数据 |
| 12 | + ''' |
| 13 | + f = open(file_path) |
| 14 | + data = [] |
| 15 | + for line in f.readlines(): |
| 16 | + row = [] # 记录每一行 |
| 17 | + lines = line.strip().split("\t") |
| 18 | + for x in lines: |
| 19 | + row.append(float(x)) # 将文本中的特征转换成浮点数 |
| 20 | + data.append(row) |
| 21 | + f.close() |
| 22 | + return np.mat(data) |
| 23 | + |
| 24 | +def distance(vecA, vecB): |
| 25 | + '''计算vecA与vecB之间的欧式距离的平方 |
| 26 | + input: vecA(mat)A点坐标 |
| 27 | + vecB(mat)B点坐标 |
| 28 | + output: dist[0, 0](float)A点与B点距离的平方 |
| 29 | + ''' |
| 30 | + dist = (vecA - vecB) * (vecA - vecB).T |
| 31 | + return dist[0, 0] |
| 32 | + |
| 33 | +def randCent(data, k): |
| 34 | + '''随机初始化聚类中心 |
| 35 | + input: data(mat):训练数据 |
| 36 | + k(int):类别个数 |
| 37 | + output: centroids(mat):聚类中心 |
| 38 | + ''' |
| 39 | + n = np.shape(data)[1] # 属性的个数 |
| 40 | + centroids = np.mat(np.zeros((k, n))) # 初始化k个聚类中心 |
| 41 | + for j in range(n): # 初始化聚类中心每一维的坐标 |
| 42 | + #print(data[:, j]) |
| 43 | + |
| 44 | + minJ = np.min(data[:, j]) |
| 45 | + #minJ = np.min(data[None, j]) |
| 46 | + |
| 47 | + rangeJ = np.max(data[:, j]) - minJ |
| 48 | + # 在最大值和最小值之间随机初始化 |
| 49 | + centroids[:, j] = minJ * np.mat(np.ones((k , 1))) \ |
| 50 | + + np.random.rand(k, 1) * rangeJ |
| 51 | + |
| 52 | +#numpy.random.randn(d0, d1, …, dn)是从标准正态分布中返回一个或多个样本值。 |
| 53 | +#numpy.random.rand(d0, d1, …, dn)的随机样本位于[0, 1)中。 |
| 54 | + |
| 55 | + return centroids |
| 56 | + |
| 57 | +def kmeans(data, k, centroids): |
| 58 | + '''根据KMeans算法求解聚类中心 |
| 59 | + input: data(mat):训练数据 |
| 60 | + k(int):类别个数 |
| 61 | + centroids(mat):随机初始化的聚类中心 |
| 62 | + output: centroids(mat):训练完成的聚类中心 |
| 63 | + subCenter(mat):每一个样本所属的类别 |
| 64 | + ''' |
| 65 | + m, n = np.shape(data) # m:样本的个数,n:特征的维度 |
| 66 | + subCenter = np.mat(np.zeros((m, 2))) # 初始化每一个样本所属的类别 (第一列:minIndex 第二列:minDist) |
| 67 | + change = True # 判断是否需要重新计算聚类中心 |
| 68 | + while change == True: |
| 69 | + change = False # 重置 |
| 70 | + for i in range(m): |
| 71 | + minDist = np.inf # 设置样本与聚类中心之间的最小的距离,初始值为正无穷 |
| 72 | + minIndex = 0 # 所属的类别 |
| 73 | + for j in range(k): |
| 74 | + # 计算i和每个聚类中心之间的距离 |
| 75 | + dist = distance(data[i, ], centroids[j, ]) |
| 76 | + if dist < minDist: |
| 77 | + minDist = dist |
| 78 | + minIndex = j |
| 79 | + # 判断是否需要改变 |
| 80 | + if subCenter[i, 0] != minIndex: # 需要改变 |
| 81 | + change = True |
| 82 | + subCenter[i, ] = np.mat([minIndex, minDist]) #改变样本所属的类别 |
| 83 | + # 重新计算聚类中心 |
| 84 | + for j in range(k): |
| 85 | + sum_all = np.mat(np.zeros((1, n))) |
| 86 | + r = 0 # 每个类别中的样本的个数 |
| 87 | + for i in range(m): |
| 88 | + if subCenter[i, 0] == j: # 计算第j个类别 |
| 89 | + sum_all += data[i, ] |
| 90 | + r += 1 |
| 91 | + for z in range(n): |
| 92 | + try: |
| 93 | + centroids[j, z] = sum_all[0, z] / r #将同一个类别的样本数据相加 求平均值得到该类别聚类中心 |
| 94 | + except: |
| 95 | + print (" r is zero") |
| 96 | + return subCenter |
| 97 | + |
| 98 | +def save_result(file_name, source): |
| 99 | + '''保存source中的结果到file_name文件中 |
| 100 | + input: file_name(string):文件名 |
| 101 | + source(mat):需要保存的数据 |
| 102 | + output: |
| 103 | + ''' |
| 104 | + m, n = np.shape(source) |
| 105 | + f = open(file_name, "w") |
| 106 | + for i in range(m): |
| 107 | + tmp = [] |
| 108 | + for j in range(n): |
| 109 | + tmp.append(str(source[i, j])) |
| 110 | + f.write("\t".join(tmp) + "\n") |
| 111 | + f.close() |
| 112 | + |
| 113 | +if __name__ == "__main__": |
| 114 | + k = 4 # 聚类中心的个数 |
| 115 | + file_path = "data.txt" |
| 116 | + # 1、导入数据 |
| 117 | + print ("---------- 1.load data ------------") |
| 118 | + data = load_data(file_path) |
| 119 | + # 2、随机初始化k个聚类中心 |
| 120 | + print ("---------- 2.random center ------------") |
| 121 | + centroids = randCent(data, k) |
| 122 | + # 3、聚类计算 |
| 123 | + print ("---------- 3.kmeans ------------") |
| 124 | + subCenter = kmeans(data, k, centroids) |
| 125 | + # 4、保存所属的类别文件 |
| 126 | + print ("---------- 4.save subCenter ------------") |
| 127 | + save_result("sub", subCenter) |
| 128 | + # 5、保存聚类中心 |
| 129 | + print ("---------- 5.save centroids ------------") |
| 130 | + save_result("center", centroids) |
0 commit comments