Playing DOOM In Discord With A Special Image URL

Can you play DOOM in Discord? At first glance, that may seem rather nonsensical, as Discord is a proprietary chat service and neither a hardware device nor something else that may seem like an obvious target for being (ab)used for demon-shooting points. That is, until you look at Discord’s content embedding feature. This is where [PortalRunner]’s Doomcord hack comes into play, allowing you to play the entire game in a Discord client by submitting text messages after embedding a very special image URL.

Rather than this embedding being done in the client as done with e.g., IRC clients, the Discord backend handles the content fetching, caching, and handing off to clients. This system can easily be used with an animated GIF of gameplay, but having it be seen as a GIF file required adding .gif to the end of the URL to trick Discord’s backend into not simply turning it into a static PNG. After this, Discord’s throttling of message speed turned out to kill the concept of real-time gameplay, along with the server load.

Plan C thus morphed into using Chocolate Doom headless, rendering gameplay into cached video files by using the demo gameplay feature in DOOM. The Doomcord server template project provides a server if you want to give it a whirl yourself. Since this uses recorded gameplay, the switch was made from GIF to the WEBP format to save space, along with a cache expiry system. Just level 1 with all possible input sequences takes up 12 TB of disk space.

Continue reading “Playing DOOM In Discord With A Special Image URL”

The New Raspberry Pi 500+: Better Gaming With Less Soldering Required

When Raspberry Pi released the Pi 500, as essentially an RPi 5 integrated into a chiclet keyboard, there were rumors based on the empty spots on the PCB that a better version would be released soon. This turned out to be the case, with [Jeff Geerling] now taking the new RPi 500+ to bits for some experimentation and keyboard modding.

The 500’s case was not designed to be opened, but if you did, you’d find that there was space allocated for a Power-Over-Ethernet section as well as an M.2 slot, albeit with all of the footprints unpopulated. Some hacking later and enterprising folk found that soldering the appropriate parts on the PCB does in fact enable a working M.2 slot. What the 500+ thus does is basically do that soldering work for you, while sadly not offering a PoE feature yet without some DIY soldering.

Perhaps the most obvious change is the keyboard, which now uses short-travel mechanical switches – with RGB – inside an enclosure that is now fortunately easy to open, as you may want to put in a different NVMe drive at some point. Or, if you’re someone like [Jeff] you want to use this slot to install an M.2 to Oculink adapter for some external GPU action.

After some struggling with eGPU devices an AMD RX 7900 XT was put into action, with the AMD GPU drivers posing no challenge after a kernel recompile. Other than the Oculink cable preventing the case from closing and also losing the M.2 NVMe SSD option, it was a pretty useful mod to get some real gaming and LLM action going.

With the additions of a presoldered M.2 slot and a nicer keyboard, as well as 16 GB RAM, you have to decide whether the $200 asking price is worth it over the $90 RPi 500. In the case of [Jeff] his kids will have to make do with the RPi 500 for the foreseeable future, and the RPi 400 still finds regular use around his studio.

Continue reading “The New Raspberry Pi 500+: Better Gaming With Less Soldering Required”

Surprisingly Refined Perpetual Motion Device Teardown

Perpetual motion devices are either a gag, a scam, or as in the case of this particular toy that [Big Clive] bought on AliExpress, a rather fascinating demonstration of a contact-free inductive sensor combined with a pulsed magnet boost for the metal ball. A cool part about the device is that it comes with a completely clear enclosure, so you can admire its internals while it’s operating. Less cool was that after unboxing the device wasn’t working as the detector wasn’t getting the 12 V it needs to operate, requiring a bit of repairing first.

The crucial part of the perpetual motion device schematic with the sensor, MCU and coil. (Credit: bigclivedotcom, YouTube)
The crucial part of the perpetual motion device schematic with the sensor, MCU and coil. (Credit: bigclivedotcom, YouTube)

Based on the label on the bottom of the device with the creative model identifier P-toy-002, its standby current is 10 µA which ramps up to 3 A when it’s operating. This makes sense when you look at the two core components: the industrial inductive detector, and a rather big electromagnet that’s driven by a bank of three 10 mF, 35V capacitors, turning it into something akin to a coilgun. Annoyingly, an attempt was made to erase most of the IC package markings.

The circuitry isn’t too complex, fortunately, with an adjustable electromagnet coil voltage circuit combined with a MOSFET to provide the pulse, and a 78L12 regulator to generate the 12 VDC from the coil’s voltage rail for the sensor that is monitored by a MCU.

Continue reading “Surprisingly Refined Perpetual Motion Device Teardown”

RTINGS 10-Year Equivalent TV Longevity Update With Many Casualties

For the past two-and-half years Canadian consumer testing outfit RTINGS has been running an accelerated aging experiment across a large number of TVs available to a North-American audience. In their most recent update, we not only  find out about the latest casualties, but also the impending end of the experiment after 18,000 hours — as the TVs are currently failing left and right as they accelerate up the ascending ramp of the bathtub curve.

Some of these LEDs are dead, others are just wired in series. (Credit: RTINGS.com)
Some of these LEDs are dead, others are just wired in series.

The dumbest failure type has to be the TVs (such as the Sony X90J) where the failure of a single dead backlight LED causes the whole TV to stop working along with series-wired LED backlights where one dead LED takes out a whole strip or zone. Other failures include degrading lightguides much as with our last update coverage last year, which was when edge-lit TVs were keeling over due to overheating issues.

Detailed updates can be found on the constantly updating log for the experiment, such as on the failed quantum dot diffusor plate in a TCL QLED TV, as the quantum dots have degraded to the point of green being completely missing. Although some OLEDs are still among the ‘living’, they’re showing severe degradation – as pictured above – after what would be the equivalent of ten years of typical usage.

Once the experiment wraps up it will be fascinating to see who the survivors are, and what the chances are of still using that shiny new TV ten years from now.

Continue reading “RTINGS 10-Year Equivalent TV Longevity Update With Many Casualties”

The Impending CRT Display Revival Will Be Televised

Until the 2000s vacuum tubes practically ruled the roost. Even if they had surrendered practically fully to semiconductor technology like integrated circuits, there was no escaping them in everything from displays to video cameras. Until CMOS sensor technology became practical, proper video cameras used video camera tubes and well into the 2000s you’d generally scoff at those newfangled LC displays as they couldn’t capture the image quality of a decent CRT TV or monitor.

For a while it seemed that LCDs might indeed be just a flash in the pan, as it saw itself competing not just with old-school CRTs, but also its purported successors in the form of SED and FED in particular, while plasma TVs  made home cinema go nuts for a long while with sizes, fast response times and black levels worth their high sale prices.

We all know now that LCDs survived, along with the newcomer in OLED displays, but despite this CRTs do not feel like something we truly left behind. Along with a retro computing revival, there’s an increasing level of interest in old-school CRTs to the point where people are actively prowling for used CRTs and the discontent with LCDs and OLED is clear with people longing for futuristic technologies like MicroLED and QD displays to fix all that’s wrong with today’s displays.

Could the return of CRTs be nigh in some kind of format?

Continue reading “The Impending CRT Display Revival Will Be Televised”

Reviving A Scrapped Sound Blaster 2.0 ISA Soundcard

What do you do when you find a ISA Sound Blaster 2.0 card in a pile of scrap? Try to repair the damage on it to give it a second shot at life, of course. This is what [Adrian Black] did with one hapless victim, with the card in question being mostly in good condition minus an IC that had been rather rudely removed. The core Creative CT1336A and Yamaha YM3812 ICs were still in place, so the task was to figure out what IC was missing, find a replacement and install it.

The CT1350 is the final revision of the original 8-bit ISA Sound Blaster card, with a number of upgrades that makes this actually quite a desirable soundcard. The CT1350B revision featured here on a card from 1994 was the last to retain compatibility with the C/MS chips featured on the original SB card. After consulting with [Alex] from the Bits und Bolts YT channel, it was found that not only is the missing IC merely an Intel 8051-based Atmel MCU, but replacements are readily available. After [Alex] sent him a few replacements with two versions of the firmware preflashed, all [Adrian] had to do was install one.

Before installation, [Adrian] tested the card to see whether the expected remaining functionality like the basic OPL2 soundchip worked, which was the case. Installing the new MCU got somewhat hairy as multiple damaged pads and traces were discovered, probably because the old chip was violently removed. Along the way of figuring out how important these damaged pads are, a reverse-engineered schematic of the card was discovered, which was super helpful.

Some awkward soldering later, the card’s Sound Blaster functionality sprung back to life, after nudging the volume dial on the card up from zero. Clearly the missing MCU was the only major issue with the card, along with the missing IO bracket, for which a replacement was printed after the video was recorded.

Continue reading “Reviving A Scrapped Sound Blaster 2.0 ISA Soundcard”

Meta’s Ray-Ban Display Glasses And The New Glassholes

It’s becoming somewhat of a running gag that any device or object will be made ‘smart’ these days, whether it’s a phone, TV, refrigerator, home thermostat, headphones or glasses. This generally means somehow cramming a computer, display, camera and other components into the unsuspecting device, with the overarching goal of somehow making it more useful to the user and not impacting its basic functionality.

Although smart phones and smart TVs have been readily embraced, smart glasses have always been a bit of a tough sell. Part of the problem here is of course that most people do not generally wear glasses, between people whose vision does not require correction and those who wear e.g. contact lenses. This means that the market for smart glasses isn’t immediately obvious. Does it target people who wear glasses anyway, people who wear sunglasses a lot, or will this basically move a smart phone’s functionality to your face?

Smart glasses also raise many privacy concerns, as their cameras and microphones may be recording at any given time, which can be unnerving to people. When Google launched their Google Glass smart glasses, this led to the coining of the term ‘glasshole‘ for people who refuse to follow perceived proper smart glasses etiquette.

Continue reading “Meta’s Ray-Ban Display Glasses And The New Glassholes”