Two hands working a TekaSketch

TekaSketch: Where Etch A Sketch Meets Graph Theory

The Etch A Sketch was never supposed to meet a Raspberry Pi, a camera, or a mathematical algorithm, but here we are. [Tekavou]’s Teka-Cam and TekaSketch are a two-part hack that transforms real photos into quite stunning, line-drawn Etch A Sketch art. Where turning the knobs only results in wobbly doodles, this machine plots out every curve and contour better than your fingertips ever could.

Essentially, this is a software hack mixed with hardware: an RPi Zero W 2, a camera module, Inkplate 6, and rotary encoders. Snap a picture, and the image is conveyed to a Mac Mini M4 Pro, where Python takes over. It’s stripped to black and white, and the software creates a skeleton of all black areas. It identifies corner bridges, and unleashes a modified Chinese Postman Algorithm to stitch everything into one continuous SVG path. That file then drives the encoders, producing a drawing that looks like a human with infinite patience and zero caffeine jitters. Originally, the RPi did all the work, but it was getting too slow so the Mac was brought in.

It’s graph theory turned to art, playful and serious at the same time, and it delivers quite unique pieces. [Tekavou] is planning on improving with video support. A bit of love for his efforts might accellerate his endeavours. Let us know in the comments below!

Continue reading “TekaSketch: Where Etch A Sketch Meets Graph Theory”

Steamboat Willie Still Tests Copyright

If you know anything about Mickey Mouse, you’ll be able to tell us that his first outing was in 1928’s Steamboat Willie — an animated short that sees our hero as the hapless pilot of a riverboat battling an assortment of animals and his captain. It entered the public domain last year, meaning that it and the 1928 incarnation of Mickey are now free of any copyright obligation to the media giant.

There’s an interesting development from Florida on that front though as it seems Disney may have been testing this through legal means, and now a law firm wants to see them in court over their proposed use of the film in an advert.

Of course here at Hackaday we don’t cover the dry subject of Florida legal news as a rule, but we are interested in the world of copyright as it applies to many other things that do come under our eye. As we understand it the law firm is requesting the judge assert their protection from trademark claims over the use of Disney’s 1928 Willie, given that there have been claims from the entertainment giant against others doing the same thing.

It’s hardly surprising that a large corporation might seek to use legal muscle and trademark law to de facto extend the term of Mickey’s protection beyond the defined copyright expiration date, so for once it’s refreshing to see them come up against someone unafraid of a courtroom.

We hope that common sense will prevail, and this undermining of a cherished right (not to mention prior case law) is not allowed to succeed. Meanwhile if you’d like a 1928 Mickey that Disney have shied away from coming after, look no further than the EFF.

Trapped Soul In Time For Halloween

While it is sort of disturbing, it is one of the best uses for a round LCD we’ve seen lately. What is it? Just [vishalsoniindia]’s SoulCage — a pendant that appears to have a poor soul trapped inside of it. Just in time for the upcoming spooky holiday. You can see the device in operation in the short video below.

The heart (sorry, unintentional pun) of the device is an ESP32-S3 round display. That means the rest of it is software, a battery, and a 3D printed case. There’s a switch, too, to select a male or female image as well as shut the device off when not in use.

Continue reading “Trapped Soul In Time For Halloween”

3D Printed “Book” Demonstrates Mechanical Actions

A book of mechanical actions is a wondrous thing — mechanically inclined children have lost collective decades pouring over them over the generations. What could possibly be better? Why, if the mechanisms in the book were present, and moved! That’s exactly what [AxelMadeIt] produced for a recent video.

Being just four pages, you might argue this is but a pamphlet. But since it takes up a couple inches of shelf space, it certainly looks like a book from the outside, which is exactly what [AxelMadeIt] was going for. To get a more book-like spine, his hinge design sacrificed opening flat, but since the pages are single-sided, that’s no great sacrifice.

At only 6 mm (1/4″) thick, finding printable mechanisms that could actually fit inside was quite a challenge. If he was machining everything out of brass, that would be room for oodles of layers. But [Axel] wanted to print the parts for this book, so the mechanisms need to be fairly thick. One page has a Roberts linkage and a vault-locking mechanism, another has planetary gears, with angled teeth to keep them from falling out. Finally, the first page has a geneva mechanism, and an escapement, both driven by a TPU belt drive.

All pages are driven from an electric motor that is buried in the last page of the “book”, along with its motor, battery, and a couple of micro-switches to turn it on when you open the book and off again when you reach the last page. Rather than a description of the mechanisms, like most books of mechanical actions, [Axel] used multi-material printing to put lovely poems on each page. A nice pro-tip is that “Futura”, a font made famous by flying to the moon, works very well when printed this way. If you just want to watch him flip through, jump to 8:00 in the video.

This reminds us of another project we once featured, which animated 2100 mechanical mechanisms. While this book can’t offer near that variety, it makes up for it in tactility.

Continue reading “3D Printed “Book” Demonstrates Mechanical Actions”

PCBs The Prehistoric Way

When we see an extremely DIY project, you always get someone who jokes “well, you didn’t collect sand and grow your own silicon”. [Patrícia J. Reis] and [Stefanie Wuschitz] did the next best thing: they collected local soil, sieved it down, and fired their own clay PCB substrates over a campfire. They even built up a portable lab-in-a-backpack so they could go from dirt to blinky in the woods with just what they carried on their back.

This project is half art, half extreme DIY practice, and half environmental consciousness.  (There’s overlap.)  And the clay PCB is just part of the equation. In an effort to approach zero-impact electronics, they pulled ATmega328s out of broken Arduino boards, and otherwise “urban mined” everything else they could: desoldering components from the junk bin along the way.

The traces themselves turned out to be the tricky bit. They are embossed with a 3D print into the clay and then filled with silver before firing. The pair experimented with a variety of the obvious metals, and silver was the only candidate that was both conductive and could be soldered to after firing. Where did they get the silver dust? They bought silver paint from a local supplier who makes it out of waste dust from a jewelry factory. We suppose they could have sat around the campfire with some old silver spoons and a file, but you have to draw the line somewhere. These are clay PCBs, people!

Is this practical? Nope! It’s an experiment to see how far they can take the idea of the pre-industrial, or maybe post-apocalyptic, Arduino. [Patrícia] mentions that the firing is particularly unreliable, and variations in thickness and firing temperature lead to many cracks. It’s an art that takes experience to master.

We actually got to see the working demos in the flesh, and can confirm that they did indeed blink! Plus, they look super cool. The video from their talk is heavy on theory, but we love the practice.

DIY clay PCBs make our own toner transfer techniques look like something out of the Jetsons.

Continue reading “PCBs The Prehistoric Way”

A Closer Look Inside A Robot’s Typewriter-Inspired Mouth

[Ancient] has a video showing off a fascinating piece of work: a lip-syncing robot whose animated electro-mechanical mouth works like an IBM Selectric typewriter. The mouth rapidly flips between different phonetic positions, creating the appearance of moving lips and mouth. This rapid and high-precision movement is the product of a carefully-planned and executed build. When we featured this project before, we wanted to see under the hood. Now we can.

Behind the face is a ball that, when moving quickly enough, gives the impression of animated mouth and lips. The new video gives a closer look at how it works.

[Ancient] dubs the concept Selectramatronics, because its action is reminiscent of the IBM Selectric typewriter. Instead of each key having a letter on a long arm that would swing up and stamp an ink ribbon, the Selectric used a roughly spherical unit – called a typeball – with letters sticking out of it like a spiky ball.

Hitting the ‘A’ key would rapidly turn the typeball so that the ‘A’ faced forward, then satisfyingly smack it into the ink ribbon at great speed. Here’s a look at how that system worked, by way of designing DIY typeballs from scratch. In this robot, the same concept is used to rapidly flip a ball bristling with lip positions.

We first saw this unusual and fascinating design when its creator showed videos of the end result on social media, pronouncing it complete. We’re delighted to see that there’s now an in-depth look at the internals in the form of a new video (the first link in this post, also embedded below just under the page break.)

The new video is wonderfully wordless, preferring to show rather than tell. It goes all the way from introducing the basic concept to showing off the final product, lip-syncing to audio from an embedded Raspberry Pi.

Continue reading “A Closer Look Inside A Robot’s Typewriter-Inspired Mouth”

Design Scanimations In A Snap With The Right Math

Barrier-grid animations (also called scanimations) are a thing most people would recognize on sight, even if they didn’t know what they were called. Move a set of opaque strips over a pattern, and watch as different slices of that image are alternately hidden and revealed, resulting in a simple animation. The tricky part is designing the whole thing — but researchers at MIT designed FabObscura as a design tool capable not only of creating the patterned sheets, but doing so in a way that allows for complex designs.

The barrier grid need not consist of simple straight lines, and movement of the grid can just as easily be a rotation instead of a slide. The system simply takes in the desired frames, a mathematical function describing how the display should behave, and creates the necessary design automatically.

The paper (PDF) has more details, and while it is possible to make highly complex animations with this system, the more frames and the more complex the design, the more prominent the barrier grid and therefore the harder it is to see what’s going on. Still, there are some very nice results, such as the example in the image up top, which shows a coaster that can represent three different drink orders.

We recommend checking out the video (embedded below) which shows off other possibilities like a clock that looks like a hamster wheel, complete with running rodent. It’s reminiscent of this incredibly clever clock that uses a Moiré pattern (a kind of interference pattern between two elements) to reveal numerals as time passes.

We couldn’t find any online demo or repository for FabObscura, but if you know of one, please share it in the comments.

Continue reading “Design Scanimations In A Snap With The Right Math”