There are a wide variety of protein-based drugs that are used to treat various serious conditions. Insulin is perhaps the most well-known example, which is used for life-saving treatments for diabetes. New antibody treatments also fall into this category, as do various vaccines.
A significant cost element in the production of these treatments is the purification step, wherein the desired protein is separated from the contents of the bioreactor it was produced in. A new nanotech discovery from MIT could revolutionize this area, making these drugs cheaper and easier to produce.
It perhaps goes without saying that one nuclear bomb can really ruin your day. The same is true for non-nuclear dirty bombs, which just use conventional explosives to disperse radioactive material over a wide area. Either way, the debris scattered by any type of radiation weapon has the potential to result in thousands or perhaps millions of injuries, for which modern medicine offers little in the way of relief.
HOPO 14-1, aka 3,4,3-Li(1,2-HOPO). The four hydroxypyridinone groups do the work of coordinating radioactive ions and making them soluble so they can be eliminated in urine.
But maybe not for long. A Phase 1 clinical trial is currently underway to see if an oral drug is able to scour radioactive elements from the human body. The investigational compound is called HOPO 14-1, a chelating agent that has a high affinity for metals in the actinide series, which includes plutonium, uranium, thorium, and cerium curium. Chelating agents, which are molecules that contain a multitude of electron donor sites, are able to bind to positively charged metal ions and make the soluble in aqueous solutions. Chelators are important in food and pharmaceutical processing — read the ingredients list on just about anything from a can of soda to a bottle of shampoo and you’re likely to see EDTA, or ethylenediaminetetraacetic acid, which binds to any metal ions that make it into the product, particularly iron ions that come from the stainless steel plumbing used in processing equipment.
The compound under evaluation, HOPO 14-1, is a powerful chelator of metal ions. Its structure is inspired by natural chelators produced by bacteria and fungi, called siderophores, which help the microorganisms accumulate iron. Its mechanism of action is to sequester the radioactive ions and make them soluble enough to be passed out of the body in the urine, rather than to have the radioactive elements carried around the body and incorporated into the bones and other tissues where they can cause radiation damage for years.
HOPO 14-1 has a number of potential benefits over the current frontline chelator for plutonium and uranium toxicity, DTPA or diethylenetriaminepentaacetic acid. Where DTPA needs to be injected intravenously to be effective, HOPO 14-1 can be made into a pill, making stockpiling and administering the drug easier. If, of course, it passes Phase 1 safety trials and survives later trials to determine efficacy.
In the constant pursuit of innovation, it’s easy to overlook the wisdom of the past. The scientific method and modern research techniques have brought us much innovation, which can often lead us to dismiss traditional cultural beliefs.
However, sometimes, there are still valuable kernels of truth in the folklore of yesteryear. This holds true in a medical study from Finland, which focused on the traditional use of spruce resin to treat chronic wounds, breathing new life into an age-old therapy.
The brain is a rather important organ, and as such, nature has gone to great lengths to protect it. The skull provides physical protection against knocks and bumps, but there’s a lesser-known defense mechanism at work too: the blood-brain barrier. It’s responsible for keeping all the nasty stuff – like bacteria, viruses, and weird chemicals – from messing up your head.
Plastic waste is a major problem, but what if you could turn the world’s trash into treasure? [Yayasan Kaki Kita Sukasada (YKKS)] in Indonesia is doing this by using recycled plastic to make prosthetic legs.
Polypropylene source material is shredded and formed into a sheet which is molded into the required shape for the socket. A layer of cloth and foam is used to cushion the interface between the patient and the socket itself. Using waste plastic to make parts for the prosthetics lowers the price for patients as well as helps to keep this material out of the landfill.
What makes this project really exciting is that [YKKS] employs disabled people who develop the prosthetics and also trains patients on how to maintain and repair their prosthetics with easily sourced tools and materials. With some medical device companies abandoning their devices, this is certainly a welcome difference.
Shape shifters have long been the stuff of speculative fiction, but researchers in China have developed a magnetoactive phase transitional matter (MPTM) that makes Odo slipping through an air vent that much more believable.
Soft robots can squeeze into small spaces or change shape as needed, but many of these systems aren’t as strong as their more mechanically rigid siblings. Inspired by the sea cucumber’s ability to manipulate its rigidity, this new MPTM can be inductively heated to a molten state to change shape as well as encapsulate or release materials. The neodymium-iron-boron (NdFeB) microparticles suspended in gallium will then return to solid form once cooled.
Applications in drug delivery, foreign object removal, and smart soldering (video after the break) probably have more real world impact than the LEGO minifig T1000 impersonation, despite how cool that looks. While a pick-and-place can do better soldering work on a factory line, there might be repair situations where a magnetically-controlled solder system could come in handy.
Modern techniques of Coordinated Reset Stimulation (CRS), which is usually administered with invasive deep brain stimulation, can have a miraculous effect on those suffering from Parkinson’s disease. However, the CRS technique can also apparently be administered via so-called vibrotactile CRS (vCRS) which essentially means vibrating certain nerve endings corresponding to brain regions that have a large cortical representation.
An example is vibrating the tips of the fingers using special gloves. This is a medical technique and as such is governed by the FDA. With ongoing trials, patients all around the world will simply have to wait. [HackyDev] has been working with a group of people on developing an open source vCRS glove.
This neuromodulation technique seems so promising, that this upfront effort by hackers around the world is simply a joy to see. Patents be dammed; we can work around them. Interested parties can follow the (very long, tricky-to-follow) thread here.
The hardware [HackyDev] put together uses a nodeMCU as the controller, driving eight motor coils via MOSFETS. The finger-mounted actuators are constructed by ripping the electromagnet out of a relay and mounting it in a 3D printed frame, with a magnet suspended on a spring. This part is mounted on each finger. The nodeMCU presents a simple web form that enables the configuration of the pulse parameters.
A permanent magnet is housed in the spring’s top section
The way the gloves appear to work is due to the way the body perceives sensory input, with a massive bias towards the hands and mouth region, referred to as the cortical homunculus. Each finger has an individual haptic element, which is actuated in a specific sequence with a carefully formed pulse at approx. 250 Hz.
This appears to activate similar in-brain effects as traditional (and invasive) DBS therapy by effectively de-synchronizing certain over-synchronized brain pathways and alleviating the overactive ß-wave activity in the brain. And this calms the tremors as well as many other PD symptoms. It’s all very exciting stuff, and we’ll be following this story closely.
For more on the backstory check out the 2017 paper by Peter A. Tass, as well as this later one, and this one. We’ve seen some recent success with diagnosing or at least detecting PD, by smell as well as via audio, so the future might look a little brighter for quite a number of people.