Build A 3D Printed Tide Clock So You Know When The Sea Is Coming To Get You

The tides! Such a unique thing, because on Earth, we don’t just have oceans full of liquid water—we also have a big ol’ moon called Moon to pull them around. You might like to keep track of the tides; if so, this tide clock from [rabbitcreek] could come in handy.

The motions of the tides are moderately complex; it was in the late 19th century that Sir William Thomson figured out a reasonable method to predict the tides mathematically and with a mechanical contrivance of his own design. These days, though, you don’t need pulleys and ropes to build a tide clock; you can just use electronics for display and the NOAA API to get the information you need.

[rabbitcreek’s] build is based around the Xiao ESP32 S3, which is charged with using its Wi-Fi connection to query NOAA up-to-date tide height data. It then uses this information to drive the position of a servo, installed inside a 3D-printed housing. The servo rotates a little red Moon indicator around a central Earth, with our home planet surrounded by a stretched blue marker indicating the swelling of the tides as influenced by the Moon’s gravity.

If you’re a surfer or beach driver that’s always wanting to know the tidal state at a glance, this clock is for you. We’ve featured other tide clocks before, but never any projects that can actually influence the tides themselves. If you’ve figured out how to mess with gravity on a planetary scale, consider applying for a Nobel Prize—but do notify the tipsline before you do.

Hackaday Links Column Banner

Hackaday Links: September 7, 2025

Two weeks ago, it was holographic cops. This week, it’s humanoid robot doctors. Or is it? We’re pretty sure it’s not, as MediBot, supposedly a $10,000 medical robot from Tesla, appears to be completely made up. Aside from the one story we came across, we can’t find any other references to it, which we think would make quite a splash in the media if it were legit. The article also has a notable lack of links and no quotes at all, even the kind that reporters obviously pull from press releases to make it seem like they actually interviewed someone.

Continue reading “Hackaday Links: September 7, 2025”

Retrotechtacular: Exploring The Moon On Surveyor 1

Aside from a few stand-out programs — looking at you, Star Trek — by the late 1960s, TV had already become the “vast wasteland” predicted almost a decade earlier by Newton Minnow. But for the technically inclined, the period offered no end of engaging content in the form of wall-to-wall coverage of anything and everything to do with the run-up to the Apollo moon landings. It was the best thing on TV, and even the endless press conferences beat watching a rerun of Gilligan’s Island.

At the time, most of the attention landed on the manned missions, with the photogenic and courageous astronauts of the Mercury, Gemini, and Apollo programs very much in the limelight. But for our money, it was the unmanned missions where the real heroics were on display, starring the less-photogenic but arguably vastly more important engineers and scientists who made it all possible. It probably didn’t do much for the general public, but it sure inspired a generation of future scientists and engineers.

With that in mind, we were pleased to see this Surveyor 1 documentary from Retro Space HD pop up in our feed the other day. It appears to be a compilation of news coverage and documentaries about the mission, which took place in the summer of 1966 and became the first lunar lander to set down softly on the Moon’s surface. The rationale of the mission boiled down to one simple fact: we had no idea what the properties of the lunar surface were. The Surveyor program was designed to take the lay of the land, and Surveyor 1 in particular was tasked with exploring the mechanical properties of the lunar regolith, primarily to make sure that the Apollo astronauts wouldn’t be swallowed whole when they eventually made the trip President Kennedy had mandated back in 1961.

The video below really captures the spirit of these early missions, a time when there were far more unknowns than knowns, and disaster always seemed to be right around the corner. Even the launch system for Surveyor, the Atlas-Centaur booster, was a wild card, having only recently emerged from an accelerated testing program that was rife with spectacular failures. The other thing the film captures well is the spacecraft’s nail-biting descent and landing, attended not only by the short-sleeved and skinny-tied engineers but by a large number of obvious civilians, including a few lucky children. They were all there to witness history and see the first grainy but glorious pictures from the Moon, captured by a craft that seemed to have only just barely gotten there in one piece.

The film is loaded with vintage tech gems, of course, along with classic examples of the animations used at the time to illustrate the abstract concepts of spaceflight to the general public. These sequences really bring back the excitement of the time, at least for those of us whose imaginations were captured by the space program and the deeds of these nervous men and women.

NASA wants to return to the moon. They also want you to help. Turns out making a good landing on the moon is harder than you might think.

Continue reading “Retrotechtacular: Exploring The Moon On Surveyor 1

The Fight To Save Lunar Trailblazer

After the fire and fury of liftoff, when a spacecraft is sailing silently through space, you could be forgiven for thinking the hard part of the mission is over. After all, riding what’s essentially a domesticated explosion up and out of Earth’s gravity well very nearly pushes physics and current material science to the breaking point.

But in reality, getting into space is just the first on a long list of nearly impossible things that need to go right for a successful mission. While scientific experiments performed aboard the International Space Station and other crewed vehicles have the benefit of human supervision, the vast majority of satellites, probes, and rovers must be able to operate in total isolation. With nobody nearby to flick the power switch off and on again, such craft need to be designed with multiple layers of redundant systems and safe modes if they’re to have any hope of surviving even the most mundane system failure.

That said, nobody can predict the future. Despite the best efforts of everyone involved, there will always be edge cases or abnormal scenarios that don’t get accounted for. With proper planning and a pinch of luck, the majority of missions are able to skirt these scenarios and complete their missions without serious incident.

Unfortunately, Lunar Trailblazer isn’t one of those missions. Things started well enough — the February 26th launch of the SpaceX Falcon 9 went perfectly, and the rocket’s second stage gave the vehicle the push it needed to reach the Moon. The small 210 kg (460 lb) lunar probe then separated from the booster and transmitted an initial status message that was received by the Caltech mission controllers in Pasadena, California which indicated it was free-flying and powering up its systems.

But since then, nothing has gone to plan.

Continue reading “The Fight To Save Lunar Trailblazer”

Render of a simple clockwork orrery

Planetary Poetry With A Tiny Digital Core

Some hacks just tickle the brain in a very particular way. They’re, for a change, not overly engineered; they’re just elegant, anachronistic, and full of mischief. That’s exactly what [Frans] pulls off with A Gentleman’s Orrery, a tiny, simple clockwork solar system. Composed of shiny brass and the poise of 18th-century craftsmanship, it hides a modern secret: there’s barely any clockwork inside. You can build it yourself.

Mechanism of a simple clockwork orreryPeek behind the polished face and you’ll find a mechanical sleight of hand. This isn’t your grandfather’s gear-laden planetarium. Instead of that, it operates on a pared-down system that relies on a stepper motor, driving planetary movement through a 0.8 mm axle nested inside a 1 mm brass tube. That micro-mechanical coupling, aided by a couple of bevel gears, manages to rotate the Moon just right, including its orientation. Most of the movement relies on clever design, not gear cascades. The real wizardry happens under the hood: a 3D-printed chassis cradles an ESP32-C6, a TTP223 capacitive touch module, STSPIN220 driver, and even a reed switch with magnetic charging.

You can even swap out the brass for a stone shell where the full moon acts as the touch control. It’s tactile, it’s poetic, and therefore, a nice hack for a weekend project. To build it yourself, read [Frans]’ Instructable.

Continue reading “Planetary Poetry With A Tiny Digital Core”

A woman in a ball cap and black tank top holds a black and white image of the Moon printed on black acrylic. It can fold and is mounted on a black plastic mechanism with turning knobs affixed to the ends. There are out-of-focus shelves in the background with various items and books on them.

Moon Phase Flip Clock Is Fantastic

We love clocks, but we especially love unusual timepieces that aren’t just about showing the hour of the day. [Simone Giertz] built a flip clock moon phase tracker for a friend.

While in Egypt for Cairo Maker Faire, [Giertz] and [dina Amin] found some old flip clocks at a flea market and had to have them. [Amin] mentioned wanting to make a moon phase tracker with one, and [Giertz] decided to try her hand at making her own version. A side quest in more comfortable flying is included with the price of admission, but the real focus is the process of figuring out how to replicate the flip clocks original mechanism in a different size and shape.

[Giertz] cut out 30 semi-circle flaps from polystyrene and then affixed vinyl cut-outs to the flaps. The instructions for the assembly suggest that this might not be the best way to do it, and that printing stickers to affix to the flaps might work better since the cut vinyl turned out pretty fiddly. We really like the part where she built a grid jig to determine the optimal placement of the beams to keep the flaps in the right position after a disheartening amount of difficulties doing it in a more manual way. Her approach of letting it rest for twenty minutes before coming back to it is something you might find helpful in your own projects.

Best of all, if you want to build your own, the files are available for the flip moon station on the Yetch website. You’ll have to come up with your own method to drive it though as that isn’t in the files from what we saw.

Continue reading “Moon Phase Flip Clock Is Fantastic”

GNSS Signals Tracked On The Moon By LuGRE

As part of the payloads on the Firefly Blue Ghost Mission 1 (BGM1) that recently touched down on the Moon, the Lunar GNNS Receiver Experiment (LuGRE) has become the first practical demonstration of acquiring and tracking Earth orbital GNSS satellites. LuGRE consists of a weak-signal GNSS receiver, a high-gain L-band patch antenna the requisite amplification and filter circuits, designed to track a number of GPS and Galileo signals.

Designed by NASA and the Italian Space Agency (ISA), the LuGRE payload’s goal was to demonstrate GNSS-based positioning, navigation and timing at the Moon. This successful demonstration makes it plausible that future lunar missions, whether in orbit or on the surface, could use Earth’s GNSS satellites to navigate and position themselves with. On the way to the lunar surface, LuGRE confirmed being able to track GNSS at various distances from the Earth.

Both LuGRE and BGM1 are part of NASA’s Commercial Lunar Payload Services (CLPS) program, with BGM1 delivering a total of ten payloads to the Moon, each designed to study a different aspect of the lunar environment, as well as hardware and technologies relevant to future missions.