When USB Charger Marketing Claims Are Technically True

The 600W is not the output rating, despite all appearances. (Credit: Denki Otaku, YouTube)
The 600W is not the output rating, despite all appearances. (Credit: Denki Otaku, YouTube)

We have seen many scam USB chargers appear over the years, with a number of them being enthusiastically ripped apart and analyzed by fairly tame electrical engineers. Often these are obvious scams with clear fire risks, massively overstated claims and/or electrocution hazards. This is where the “600W” multi-port USB charger from AliExpress that [Denki Otaku] looked at is so fascinating, as despite only outputting 170 Watt before cutting out, it’s technically not lying in its marketing and generally well-engineered.

The trick being that the “600W” is effectively just the model name, even if you could mistake it for the summed up output power as listed on the ports. The claimed GaN components are also there, with all three claimed parts counted and present in the main power conversion stages, along with the expected efficiency gains.

While testing USB-PD voltages and current on the USB-C ports, the supported USB-PD EPR wattage and voltages significantly reduce when you start using ports, indicating that they’re clearly being shared, but this is all listed on the product page.

The main PCB of the unit generates the 28 VDC that’s also the maximum voltage that the USB-C ports can output, with lower voltages generated as needed. On the PCB with the USB ports we find the step-down converters for this, as well as the USB-PD and other USB charging control chips. With only a limited number of these to go around, the controller will change the current per port dynamically as the load increases, as you would expect.

Considering that this particular charger can be bought for around $30, is up-front about the limitations and uses GaN, while a genuine 300 Watt charger from a brand like Anker goes for $140+, it leads one to question the expectations of the buyer more than anything. While not an outright scam like those outrageous $20 ‘2 TB’ SSDs, it does seem to prey on people who have little technical understanding of what crazy amounts of cash you’d have to spend for a genuine 600 Watt GaN multi-port USB charger, never mind how big such a unit would be.

Continue reading “When USB Charger Marketing Claims Are Technically True”

Fault Analysis Of A 120W Anker GaNPrime Charger

Taking a break from his usual prodding at suspicious AliExpress USB chargers, [DiodeGoneWild] recently had a gander at what used to be a good USB charger.

The Anker 737 USB charger prior to its autopsy. (Credit: DiodeGoneWild, YouTube)
The Anker 737 USB charger prior to its autopsy.

Before it went completely dead, the Anker 737 GaNPrime USB charger which a viewer sent him was capable of up to 120 Watts combined across its two USB-C and one USB-A outputs. Naturally the charger’s enclosure couldn’t be opened non-destructively, and it turned out to have (soft) potting compound filling up the voids, making it a treat to diagnose. Suffice it to say that these devices are not designed to be repaired.

With it being an autopsy, the unit got broken down into the individual PCBs, with a short detected that eventually got traced down to an IC marked ‘SW3536’, which is one of the ICs that communicates with the connected USB device to negotiate the voltage. With the one IC having shorted, it appears that it rendered the entire charger into an expensive paperweight.

Since the charger was already in pieces, the rest of the circuit and its ICs were also analyzed. Here the gallium nitride (GaN) part was found in the Navitas GaNFast NV6136A FET with integrated gate driver, along with an Infineon CoolGaN IGI60F1414A1L integrated power stage. Unfortunately all of the cool technology was rendered useless by one component developing a short, even if it made for a fascinating look inside one of these very chonky USB chargers.

Continue reading “Fault Analysis Of A 120W Anker GaNPrime Charger”

A Close Look At USB Power

It’s not a stretch to say that most devices these days have settled on USB as their power source of choice. While we imagine you’ll still be running into the occasional wall wart and barrel jack for the foreseeable future, at least we’re getting closer to a unified charging and power delivery technology. But are all USB chargers and cables created equal?

The answer, of course, is no. But the anecdotal information we all have about dud USB gear is just that, which is why [Igor Brkić] wanted to take a more scientific approach. Inspired by the lighting bolt icon the Raspberry Pi will flash on screen when the voltage drops too low, he set out to make a proper examination of various USB chargers and cables to see which ones aren’t carrying their weight.

In the first half of his investigation, [Igor] tests four fairly typical USB chargers with his TENMA 72-13200 electronic load. Two of them were name brand, and the other just cheap clones. He was surprised to find that all of the power supplies not only met their rated specifications, but in most cases, over-performed by a fair amount. For example the Lenovo branded charger that was rated for only 1 A was still putting out a solid 5 V at 1.7 A. Of course there’s no telling what would happen if you ran them that high for hours or days at a time, but it does speak to their short-term burst capability at least.

He then moved onto the USB cables, were things started to fall apart. The three generic cables saw significant voltage drops even at currents as low as 0.1 A, though the name brand cable with 20 AWG power wires did fare a bit better. But by .5 A they were all significantly below 5 V, and at 1 A, forget about it. Pulling anything more than that through these cables is a non-starter, and in general, you’ll need to put at least 5.2 V in if you want to actually run a USB device on the other side.

Admittedly this might not be groundbreaking research, but we appreciate [Igor] taking a scientific approach and tabulating all the information. If you’re still getting low voltage warnings on the Pi after swapping out your cheapo cables, then maybe the problem is actually elsewhere.

Hackaday Podcast 077: Secret Life Of SD Cards, Mining Minecraft’s Secret Seed, BadPower Is Bad, And Sailing A Sea Of Neon

Hackaday editors Mike Szczys and Elliot Williams are deep in the hacks this week. What if making your own display matrix meant a microcontroller board for every pixel? That’s the gist of this incredible neon display. There’s a lot of dark art poured into the slivers of microSD cards and this week saw multiple hacks digging into the hidden test pads of these devices. You’ve heard of Folding@Home, but what about Minecraft@Home, the effort to find world seeds from screenshots. And when USB chargers have exposed and rewritable firmware, what could possibly go wrong?

Take a look at the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Take a look at the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Direct download (60 MB or so.)

Continue reading “Hackaday Podcast 077: Secret Life Of SD Cards, Mining Minecraft’s Secret Seed, BadPower Is Bad, And Sailing A Sea Of Neon”

Micro Wind Turbine For Hikers

[Nils Ferber] is a product designer from Germany. His portfolio includes everything from kitchen appliances to backpacks. One project, though, has generated a bit of attention. It’s a micro wind turbine aimed at long distance hikers.

Even on the trail, electronics have become a necessity. From GPS units to satellite phones, to ebook readers. Carrying extra batteries means more pack weight, so many hikers utilize solar panels. The problem is that when the sun is up, hikers are on the move – not very conducive to deploying a solar array. The Wind, however, blows all through the night.

[Nils] used carbon fiber tube, ripstop nylon, and techniques more often found in kite building to create his device. The turbine starts as a small cylindrical pack. Deploying it takes only a few minutes of opening panels and rigging guy wires. Once deployed, the turbine is ready to go.

While this is just a prototype, [Nils] claims it generates 5 Watts at a wind speed of 18 km/h, which can be used to charge internal batteries, or sent directly to any USB device. That seems a bit low for such a stiff wind, but again, this is just a prototype. Could you do better? Tell us in the comments! If you’re looking for a DIY wind generator on a slightly larger scale, you could just build one from bike parts.

Continue reading “Micro Wind Turbine For Hikers”

Slimline USB Charger For Tiny Ham Radios

The recent trend to smaller and smaller handy talkie (HT) transceivers is approaching the limits of the human interface. Sure, engineers could probably continue shrinking the Baofeng and Wouxun HTs further, but pretty soon they’ll just be too small to operate. And it’s getting to the point where the accessories, particularly the battery charging trays, are getting bulkier than the radios. With that in mind, [Mads Hobye] decided to slim down his backpacking loadout by designing a slimline USB charger for his Baofeng HT.

Lacking an external charging jack but sporting a 3.7 volt battery pack with exposed charging terminals on the rear, [Mads] cleverly capitalized on the belt clip to apply spring tension to a laser-cut acrylic plate. A pair of bolts makes contact with the charging terminals on the battery pack, and the attached USB cable allows him to connect to an off-the-shelf 3.7 volt LiPo USB charger, easy to come by in multicopter circles. YMMV – the Baofeng UV-5R dual-band HT sitting on my desk has a 7.4 volt battery pack, so I’d have to make some adjustments. But you have to applaud the simplicity of the build and its packability relative to the OEM charging setup.

This isn’t the first time we’ve seen [Mads] on Hackaday. He and the FabLab RUC crew were recently featured with their open-source robotic arm.

Crack Open A USB Car Charger To Make It A Variable DC-DC Converter

[Boolean90] hacked a cheap USB car charger into a variable power supply. His proof of concept is to use this as a variable-speed motor controller. The best part is that nothing is being abused, the regulator inside is still running within manufacturer’s spec.

While we’ve seen similar hacks before, [Boolean90]s video is pretty cool and provides a nice insight into the components used in these cheap devices. Rather than a linear regulator, which would dissipate too much heat the device uses a common jelybean MC34063A (PDF) switching DC-DC converter which costs about 10 cents on eBay (about two dollars for twenty, shipped). Here it’s used to step the car batteries 12 volts down to 5, but can also be used in step-up and inverting configurations.

Like all switching buck converters the MC34063A uses a PWM (pulse width modulated) signal to drive an inductor and capacitor, which effectively form an LC filter. By controlling the pulse width, the output voltage can be regulated. [Afrotechmods] has a great tutorial on the basic principle. The regulation is controlled by feedback resistors. [Boolean90] simply added a variable resistor to allow the output voltage to be controlled.

Neat hack [Boolean90]! Continue reading “Crack Open A USB Car Charger To Make It A Variable DC-DC Converter”