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Contents.
This worked example

• fetches a data file from a web site,

• applies that file as input data for a differential equation modeling a
vibrating system,

• solves the equation by a finite difference method,

• visualizes various properties of the solution and the input data.

The following programming topics are illustrated:

• basic Python constructs: variables, loops, if-tests, arrays, functions

• flexible storage of objects in lists,

• storage of objects in files (persistence),

• downloading files from the web,

• user input via the command line,

• signal processing and FFT,

• curve plotting of data,

• unit testing,



• symbolic mathematics,

• modules.

All files can be forked at https://github.com/hplgit/bumpy.

Optimal background for reading this note.

• some interest in exploring physics through numerical simulation

• some very basic knowledge of

– differential equations
– finite difference approximations
– Python or Matlab

• significant interest in exploring Python for scientific computations to solve
a real-world physical problem (with low mathematical complexity)

You can read in two ways: either as a detailed example on using Python
for solving differential equations (some very basic Python knowledgea is
preferred) or just to get an impression of how Python can be used in a
Matlab-like fashion.

ahttp://hplgit.github.io/bumpy/doc/web/index.html

If you need motivation for using Python as programming language, see
Appendix A. Lists of many useful tutorials and introductions to Python, with
emphasis on scientific computing, are found in Appendix B.

1 A scientific application
1.1 Physical problem and mathematical model
The task is to make a simulation program that can predict how a (simple)
mechanical system oscillates in response to environmental forces. Introducing
u(t) as some displacement of the system at time t, application of Newton’s
second law of motion to such a mechanical system often results in the following
type of equation for u:

mu′′ + f(u′) + s(u) = F (t), (1)

The prime, as in u′, denotes differentiation with respect to time (u′(t) or du/dt).
Furthermore, m is the mass of the system, f(u′) is a friction force that gives rise
to a damping of the motion, s(u) represents a restoring force, such as a spring,
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and F (t) models the external environmental forces on the system. Equation
(1) must be accompanied by two initial conditions: u(0) = I and u′(0) = V .
The values of these have no effect on the steady state behavior of u(t) for large
values of t, since this behavior is determined by the force F (t) and the system
parameters m, f(u′), and s(u).

There are two types of the friction force f : linear damping f(u′) = bu′ and
quadratic damping f(u′) = bu′|u′|. The input data consists of m, b, s(u), F (t),
I, V , and specification of linear or quadratic damping. The unknown quantity
to be computed is u(t) for t ∈ (0, T ].

One example where the model above has relevance, is the vertical vibration
of a vehicle in response to a bumpy road. Let h(x) be the height of the road at
some coordinate x along the road. When driving along this road with constant
velocity v, the vehicle is moved up and down in time according to h(vt), resulting
in an external vertical force F (t) = −mh′′(vt)v2. We assume that the vehicle
has springs and dampers that here are modeled as bu′ (damper) and s(s) = ku
(spring), with given damping parameter b and spring constant k. The unknown
u(t) is the vertical displacement of the vehicle relative to the road. Figure 1
illustrates the situation. You may view an animation1 of such a motion on the
web (by the way, this animation was created by coupling the Pysketcher2 tool
for figure drawings with the differential equation solver presented later, see the
script bumpy_road_fig.py3 for all details).

Figure 1: Vehicle on a bumpy road.

Another example regards the vertical shaking of a building due to earthquake-
induced movement of the ground. If the vertical displacement of the ground is
recorded as a function d(t), this results in a vertical force F (t) = −md′′(t). The
soil foundation acts as a spring and damper on the building, modeled through
the damping parameter b and normally a linear spring term s(u) = ku.

1http://hplgit.github.io/bumpy/doc/src/mov-bumpy/m2_k1_5_b0_2/index.html
2https://github.com/hplgit/pysketcher
3https://github.com/hplgit/bumpy/blob/master/doc/src/fig-bumpy/bumpy_road_fig.py
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In both cases we drop the effect of gravity, which is just a constant compression
of the spring.

Our task is to compute and analyze the vertical u(t) vibrations of a vehicle,
given the shape h(x) of the road and some velocity v.

1.2 Numerical model
The differential equation problem (1) can be solved by introducing finite difference
approximations for u′′ and u′. In case of quadratic damping one can use a
geometric mean to approximate u′|u′| and thereby linearize the equations. The
result of using such numerical methods is an algorithm for computing u(t) at
discrete points in time. Let un be the approximation to u at time tn = n∆t,
n = 1, 2, . . ., where ∆t is a (small) time interval. For example, if ∆t = 0.1, we
find approximations u1 to u at t = 0.1, u2 at t = 0.2, u3 to t = 0.3, and so forth.
Any value un+1 can be computed if un and un−1 are known (i.e., previously
computed). The formula for un+1 is, in case of linear damping f(u′) = bu′,

un+1 =
(

2mun + ( b2∆t−m)un−1 + ∆t2(Fn − s(un))
)

(m+ b

2∆t)−1, (2)

where Fn means F (t) evaluated for t = tn. A special formula must be applied
for n = 0:

u1 = u0 + ∆t V + ∆t2

2m (−bV − s(u0) + F 0) . (3)

For quadratic damping we have a slightly different formula,

un+1 =
(
m+ b|un − un−1|

)−1×(
2mun −mun−1 + bun|un − un−1|+ ∆t2(Fn − s(un))

)
, (4)

and again a special formula for u1:

u1 = u0 + ∆tV + ∆t2

2m
(
−bV |V | − s(u0) + F 0) . (5)

The implementation of the computational algorithm can make use of an array
u to represent un as u[n]. The force F (tn) is assumed to be available as an array
element F[n]. The following Python function computes u given an array t with
time points t0, t1, . . ., the initial displacement I, mass m, damping parameter b,
restoring force s(u), environmental forces F as an array (corresponding to t).

1.3 Simple implementation
Let us first implement the computational formulas for the linear damping case
in a short and compact Python function:
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from numpy import *

def solver_linear_damping(I, V, m, b, s, F, t):
N = t.size - 1 # No of time intervals
dt = t[1] - t[0] # Time step
u = zeros(N+1) # Result array
u[0] = I
u[1] = u[0] + dt*V + dt**2/(2*m)*(-b*V - s(u[0]) + F[0])

for n in range(1,N):
u[n+1] = 1./(m + b*dt/2)*(2*m*u[n] + \

(b*dt/2 - m)*u[n-1] + dt**2*(F[n] - s(u[n])))
return u

1.4 Dissection of the code
Functions in Python start with def, followed by the function name and the
list of input objects separated by comma. The function body is indented, and
the first non-indented line signifies the end of the function body block. Output
objects are returned to the calling code by a return statement.

The arguments to this function and the variables created inside the function
are not declared with type. We therefore need to know what the variables
are supposed to be: I, V, m, and b are real numbers, while F and t are one-
dimensional arrays of the same length, where F holds F (tn) and t holds tn,
n = 0, 1, . . . , N + 1.

The number of elements in an array t is given by t.size (or len(t), but
t.size works for multi-dimensional arrays too). Arrays are indexed by square
brackets, and indices always start at 0. Numerical codes frequently needs to loop
over array indices, i.e., a set of integers. Such a set is produced by range(start,
stop, increment), which returns a list of integers start, start+increment,
start+2*increment, and so on, up to but not including stop. Writing just
range(stop) means range(0, stop, 1). The particular call range(1, N)
used in the code above results in a list of integers: 1, 2, ..., N-1.

Array functionality is enabled by the numpy package, which offers functions
such as zeros and linspace, as known from Matlab. Here we import all objects
in the numpy package by the statement

from numpy import *

Comments start with the character # and the rest of the line is then ignored
by Python.

Every variable in Python is an object. In particular, the s function above is
a function object, transferred to the function as any other object, and called as
any other function. Transferring a function as argument to another function is
therefore simpler and cleaner in Python than in, e.g., C, C++, Java, C#, and
Matlab.

How can we use the solver_linear_damping function? We need to call it
with relevant values for the arguments. Suppose we want to solve a vibration
problem with I = 1, V = 0, F = 0, m = 2, b = 0.2, s(u) = 2u, ∆t = 0.2, for
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t ∈ [0, 10π]. This will be a damped sinusoidal solution (setting b = 0 will result
in u(t) = cos t). The test code becomes

from solver import solver_linear_damping
from numpy import *

def s(u):
return 2*u

T = 10*pi # simulate for t in [0,T]
dt = 0.2
N = int(round(T/dt))
t = linspace(0, T, N+1)
F = zeros(t.size)
I = 1; V = 0
m = 2; b = 0.2
u = solver_linear_damping(I, V, m, b, s, F, t)

from matplotlib.pyplot import *
plot(t, u)
savefig(’tmp.pdf’) # save plot to PDF file
savefig(’tmp.png’) # save plot to PNG file
show()

The solver_linear_damping function resides in the file solver.py, so if
we make the call to this function in separate file (assumed above), we have to
import the function as shown. We also need functions and variables from the
numpy package, here pi, linspace, and zeros. Normally, there is one statement
per line in Python programs, and there is no need to end the statement with
a semicolon. However, if we want multiple statements on a line, they must be
separated by semi colon as demonstrated in the initialization of I and V. Plotting
the computed curve makes use of the matplotlib package, where we call its
plot, savefig, and show functions. Figure 2 shows the result.

1.5 More advanced implementation
Let us extend the function above to also include the quadratic damping for-
mulas. The F (t) function in (1) is required to be available as an array in the
solver_linear_damping function, but now we will allow for more flexibility:
the F argument may either be a Python function F(t) or a Python array. In
addition, we add some checks that variables have correct values or are of correct
type.

import numpy as np

def solver(I, V, m, b, s, F, t, damping=’linear’):
"""
Solve m*u’’ + f(u’) + s(u) = F for time points in t.
u(0)=I and u’(0)=V,
by a central finite difference method with time step dt.
If damping is ’linear’, f(u’)=b*u, while if damping is
’quadratic’, we have f(u’)=b*u’*abs(u’).
s(u) is a Python function, while F may be a function
or an array (then F[i] corresponds to F at t[i]).
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Figure 2: Plot of computed curve.

"""
N = t.size - 1 # No of time intervals
dt = t[1] - t[0] # Time step
u = np.zeros(N+1) # Result array
b = float(b); m = float(m) # Avoid integer division

# Convert F to array
if callable(F):

F = F(t)
elif isinstance(F, (list,tuple,np.ndarray)):

F = np.asarray(F)
else:

raise TypeError(
’F must be function or array, not %s’ % type(F))

u[0] = I
if damping == ’linear’:

u[1] = u[0] + dt*V + dt**2/(2*m)*(-b*V - s(u[0]) + F[0])
elif damping == ’quadratic’:

u[1] = u[0] + dt*V + \
dt**2/(2*m)*(-b*V*abs(V) - s(u[0]) + F[0])

else:
raise ValueError(’Wrong value: damping="%s"’ % damping)

for n in range(1,N):
if damping == ’linear’:

u[n+1] = (2*m*u[n] + (b*dt/2 - m)*u[n-1] +
dt**2*(F[n] - s(u[n])))/(m + b*dt/2)

elif damping == ’quadratic’:
u[n+1] = (2*m*u[n] - m*u[n-1] + b*u[n]*abs(u[n] - u[n-1])
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- dt**2*(s(u[n]) - F[n]))/\
(m + b*abs(u[n] - u[n-1]))

return u, t

1.6 Dissection of the code
Two types of import. This time we replace from numpy import *, which
imports over 500 variables and functions, by import numpy as np, which just
imports one variable, the package numpy, here under the nickname np. All
variables and functions in numpy must now be reached via the prefix np., as in
np.zeros, and np.linspace, and np.pi (for π). The advantage of the prefix is
that we clearly see where functionality comes from. The disadvantage is that
mathematical formulas like sin(πx) must be written np.sin(np.pi*x). We can
always perform an explicit import of some names, like sin and pi, to write the
formula as sin(pi*x):

import numpy as np
from numpy import sin, pi

def myfunction(x):
return sin(pi*x)

Another disadvantage with the np. prefix is that names are no longer (almost)
the same as in Matlab. Many will therefore prefer to do from numpy import *
and skip the prefix.

Doc strings. The string, enclosed in triple double-quotes, right after the
function definition, is a doc string used for documenting the function. Various
tools can extract function definitions and doc strings to automatically produce
nicely typeset manuals.

Avoiding integer division. At one line we explicitly convert b and m to
float variables. This is not strictly necessary, but if we supply b=2 and m=4,
a computation like b/m will give zero as result because both b and m are then
integers and b/m implies integer division, not the mathematical division of real
numbers (this is not a special feature of Python - all languages with a strong
heritage from C invoke integer division if both operands in a division are integers).
We need to make sure that at least one of the operands in a division is a real
number (float) to ensure the intended mathematical operation. Looking at the
formulas, there is never a problem with integer division in our implementation,
because dt is computed from t, which has float elements (linspace makes
float elements by default), and all divisions in our code involve dt as one of
the operands. However, future edits may alter the way formulas are written, so
to be on the safe side we ensure that real input parameters are float objects.

Flexible variable type. As mentioned, we allow F to be either a function
or an array. In the former case, we convert F to an array such that the rest of
the code can assume that F is indeed an array. It is easy to check the type of
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variables in Python. The test if callable(F) is true if the object F can be
called as a function.

Checking correct variable type. To test that F is an array, we can use
isinstance(F, np.ndarray) (ndarray is the name of the array type in numpy).
In the code above we allow that F can also be a list or a tuple. Running F
through the asarray function makes an array out of F in the cases where F is a
list or tuple. The final else: clause takes care of the situation where F is neither
a function, nor an object that can easily be converted to an array, and an error
message is issued. More precisely, we raise a TypeError exception indicating that
we have encountered a wrong type. The error message will contain the type of F
as obtained from type(F). Instead of using the syntax isinstance(F, list) we
may test type(F) == list or even type(F) in (list,tuple,np.ndarray).

We could simplify the if-else test involving F to just the two lines

if callable(F):
F = F(t)

if we are sure that F is either a function or a numpy array. Should the user send
in something else for F, Python will encounter a run-time error when trying to
index F as in F[0] (in the statement computing u[1]).

To be absolutely safe, we should test that the other arguments are of right
type as well. For example,

if not isinstance(I, (float,int)):
raise TypeError(’V must be float or int, not %s’ % type(V))

and similar for V, m, b, while s must be tested by callable(s), t must be
np.ndarray, and damping must be str.

Calling the function. Below is a simple example on how the solver function
can be called to solve the differential equation problem mu′′+bu′+ku = A sin πt,
u(0) = I, u′(0) = 0:

import numpy as np
from numpy import sin, pi # for nice math

def F(t):
# Sinusoidal bumpy road
return A*sin(pi*t)

def s(u):
return k*u

A = 0.25
k = 2
t = np.linspace(0, 20, 2001)
u, t = solver(I=0, V=0, m=2, b=0.05, s=s, F=F, t=t)

# Show u(t) as a curve plot
import matplotlib.pyplot as plt
plt.plot(t, u)
plt.show()

9



Local and global variables. We use in this example a linear spring function
s(u),

def f(u):
return k*u

Here, u is a local variable, which is accessible just inside in the function, while k
is a global variable, which must be initialized outside the function prior to calling
f.

Advanced programming of functions with parameters.

The best way to implement mathematical functions that has a set of
parameters in addition some independent variables is to create a class
where the parameters are attributes and a __call__ method evaluates
the function formula given the independent variables as arguments. This
requires, of course, knowledge of classes and special methods like __call__.

As an example, the f(u) function above can be implemented as

class Spring:
def __init__(self, k):

self.k = k
def __call__(self, u):

return self.k*u

f = Spring(k)

Because of the __call__ method, we can make calls f(u). Note that the
k parameter is bundled with the function in the f object.

1.7 The excitation force
Considering the application where the present mathematical model describes the
vibrations of a vehicle driving along a bumpy road, we need to establish the force
array F from the shape of the road h(x). Various shapes are available as a file
with web address http://hplbit.bitbucket.org/data/bumpy/bumpy.dat.gz.
The Python functionality for downloading this gzip compressed file as a local
file bumpy.dat.gz and reading it into a numpy array goes as follows:

filename = ’bumpy.dat.gz’
url = ’http://hplbit.bitbucket.org/data/bumpy/bumpy.dat.gz’
import urllib
urllib.urlretrieve(url, filename)
h_data = np.loadtxt(filename) # read numpy array from file

The h_data object is a rectangular numpy array where the first column
contains the x coordinates along the road and the next columns contain various
road shapes h(x). We can extract the x data and redefine h_data to contain
solely the h(x) shapes:
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x = h_data[0,:] # 1st column: x coordinates
h_data = h_data[1:,:] # other columns: h shapes

In general, the syntax a[s:t:i,2] gives a view (not a copy) to the part of the
array a where the first index goes from s to t, but not including the t value, in
increments of i, and the second index is fixed at 2. Just writing : for an index
means all legal values of this index.

Given h(x), the corresponding acceleration a(t) needed in the force F (t) =
−ma(t), follows from a(t) = h′′(vt)v2, where v is the velocity of the vehicle. The
computation may utilize a finite difference approximation for the second-order
derivative h′′ and be encapsulated in a Python function:

def acceleration(h, x, v):
"""Compute 2nd-order derivative of h."""
# Method: standard finite difference aproximation
d2h = np.zeros(h.size)
dx = x[1] - x[0]
for i in range(1, h.size-1, 1):

d2h[i] = (h[i-1] - 2*h[i] + h[i+1])/dx**2
# Extraplolate end values from first interior value
d2h[0] = d2h[1]
d2h[-1] = d2h[-2]
a = d2h*v**2
return a

Note that here, h is a one-dimensional array containing the h(x) values
corresponding to a given coordinate array x. Also note that we for mathematical
simplicity set h′′(x) at the end points equal to h′′(x) at the closest interior point.

The computations of d2h above was done array element by array element.
This loop can be a slow process in Python for long arrays. To speed up
computations dramatically, we can invoke a vectorization of the above algorithm.
This means that we get rid of the loops and perform arithmetics on complete
(or almost complete) arrays. The vectorized form of the acceleration function
goes like

def acceleration_vectorized(h, x, v):
"""Compute 2nd-order derivative of h. Vectorized version."""
d2h = np.zeros(h.size)
dx = x[1] - x[0]
d2h[1:-1] = (h[:-2] - 2*h[1:-1] + h[2:])/dx**2
# Extraplolate end values from first interior value
d2h[0] = d2h[1]
d2h[-1] = d2h[-2]
a = d2h*v**2
return a

For each shape h(x) we want to compute the corresponding vertical displace-
ment u(t) using the mathematical model (1). This can be accomplished by
looping over the columns of h_data and calling solver for each column, i.e.,
each realization of the force F . The major arrays from the computations are
collected in a list data. The two first elements in data are x and t. The next
elements are 3-lists [h, a, u] for each road shape. Note that some elements in
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data are arrays while others are list of arrays. This composition is convenient
when analyzing and visualizing key quantities in the problem.

The computations of u for each road shape can be done as follows:

data = [x, t] # key input and output data (arrays)
for i in range(h_data.shape[0]):

h = h_data[i,:] # extract a column
a = acceleration(h, x, v)
F = -m*a

u = solver(t=t, I=0, m=m, b=b, f=f, F=F)

data.append([h, F, u])

A parameter choice m = 60 kg, v = 5 m/s, k = 60 N/m, and b = 80 Ns/m
corresponds to a velocity of 18 km/h and a mass of 60 kg, i.e., bicycle conditions.

1.8 A high-level solve function
The code above for simulating vertical vibrations in a vehicle is naturally im-
plemented as a Python function. This function can take the most important
physical parameters of the problem as input, along with information about the
file with road shapes. We allow for defining road shapes either through a file on
a web site or a local file.

def bumpy_road(url=None, m=60, b=80, k=60, v=5):
"""
Simulate vertical vehicle vibrations.

========= ==============================================
variable description
========= ==============================================
url either URL of file with excitation force data,

or name of a local file
m mass of system
b friction parameter
k spring parameter
v (constant) velocity of vehicle
Return data (list) holding input and output data

[x, t, [h,F,u], [h,F,u], ...]
========= ==============================================
"""
# Download file (if url is not the name of a local file)
if url.startswith(’http://’) or url.startswith(’file://’):

import urllib
filename = os.path.basename(url) # strip off path
urllib.urlretrieve(url, filename)

else:
# Check if url is the name of a local file
filename = url
if not os.path.isfile(filename):

print url, ’must be a URL or a filename’
sys.exit(1) # abort program

# else: ok

h_data = np.loadtxt(filename) # read numpy array from file
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x = h_data[0,:] # 1st column: x coordinates
h_data = h_data[1:,:] # other columns: h shapes

t = x/v # time corresponding to x
dt = t[1] - t[0]

def f(u):
return k*u

data = [x, t] # key input and output data (arrays)
for i in range(h_data.shape[0]):

h = h_data[i,:] # extract a column
a = acceleration(h, x, v)
F = -m*a

u = solver(t=t, I=0, m=m, b=b, f=f, F=F)

data.append([h, F, u])
return data

Note that function arguments can be given default values (known as keyword
arguments in Python). Python has a lot of operating system functionality,
such as checking if a file, directory, or link exist, creating or removing files and
directories, running stand-alone applications, etc.

1.9 Storing Python objects in files
After calling

road_url = ’http://hplbit.bitbucket.org/data/bumpy/bumpy.dat.gz’
data = solve(url=road_url, m=60, b=200, k=60, v=6)

the data array contains single arrays and triplets of arrays,

[x, t, [h,F,u], [h,F,u], ..., [h,F,u]]

This list, or any Python object, can be stored on file for later retrieval of the
results, using the pickling functionality in Python:

import cPickle as pickle
# Or using a more advanced module
import dill as pickle
outfile = open(’bumpy.res’, ’w’)
pickle.dump(data, outfile)
outfile.close()

The advantage of the dill module over cPickle is that it can store a wider
range of Python objects (e.g., lambda functions).

The code above and the bumpy_road function are found in the file bumpy.py4.
4https://github.com/hplgit/bumpy/blob/master/doc/src/src-bumpy/bumpy.py
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1.10 Computing the root mean square value
Since the roads have a quite noise shape, the force F = −ma looks very noisy,
while the response u(t) to this excitation is significantly less noisy, see the bottom
plot in Figure 5 for an example. It may be useful to compute the root mean
square value5 of u to get a number for the typical amplitude of the vibrations:

urms =

√
T−1

∫ T

0
u2dt ≈

√√√√ 1
N + 1

N∑
i=0

(un)2 .

The last expression can be computed as follows using a vectorized sum (np.sum(u**2)):

u_rms = []
for h, F, u in data[2:]:

u_rms.append(np.sqrt((1./len(u))*np.sum(u**2))

Very often in numerical computing we have some list/array and want to
compute a new list/array where each element is some expression involving an
element of the first list/array, typically

v = []
for element in u:

v.append(expression(element))

This code can more compactly be written as a list comprehension:

v = [expression(element) for element in u]

We may use the list comprehension construction for computing the u_rms values:

u_rms = [np.sqrt((1./len(u))*np.sum(u**2))
for h, F, u in data[2:]]

2 User input
We can in this example easily set the input data directly in the program, e.g., in
the call to the solve function, as demonstrated above. However, most users will
find it more convenient to set parameters through a user interface rather than
editing the source code directly.

2.1 Positional command-line arguments
The simplest, and often also the most effective type of user interface is to use
the command line. Suppose m, k, and v, as well as the URL or filename for the
road shapes, are fixed parameters and that the user is allowed to vary b only.
Then it is convenient, both for the user and the programmer, to specify b as the
first command-line argument to the program. If the name of the program file is
bumpy.py and b = 10 is desired, we can write

5http://en.wikipedia.org/wiki/Root_mean_square
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Terminal> python bumpy.py 10

The corresponding code in the program for setting input data and extract the
user-given value of b reads

def prepare_input():
url = ’http://hplbit.bitbucket.org/data/bumpy/bumpy.dat.gz’
m = 60
k = 60
v = 5
try:

b = float(sys.argv[1])
except IndexError:

b = 80 # default
return url, m, b, k, v

The command-line arguments are available as strings in the list sys.argv,
from the element with index 1 and onward. The first command-line argument
sys.argv[1] is a string so it must be converted to a float object (representing
real number) prior to computations. If the command-line argument is missing,
sys.argv[1] is illegal indexing and the IndexError exception is raised. We
can test for this error and provide a default value. Without the try-except
construction, the program will abort with an error message if no command-line
argument is given.

2.2 Option-value pairs on the command line
Letting the user set many parameters on the command line is most conveniently
done by allowing option-value pairs, e.g.,

Terminal> python bumpy.py --m 40 --b 280

All parameters have a default value which can be overridden on the command
line by providing the string (option) –name, where name is the name of the
parameter, followed by the desired value of the parameter. Implementation of
option-value input is most easily carried out using Python’s argparse module.
The recipe goes as follows.

def command_line_options():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(’--m’, ’--mass’, type=float,

default=60, help=’mass of vehicle’)
parser.add_argument(’--k’, ’--spring’, type=float,

default=60, help=’spring parameter’)
parser.add_argument(’--b’, ’--damping’, type=float,

default=80, help=’damping parameter’)
parser.add_argument(’--v’, ’--velocity’, type=float,

default=5, help=’velocity of vehicle’)
url = ’http://hplbit.bitbucket.org/data/bumpy/bumpy.dat.gz’
parser.add_argument(’--roadfile’, type=str,

default=url, help=’filename/URL with road data’)
args = parser.parse_args()
# Extract input parameters
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m = args.m; k = args.k; b = args.b; v = args.v
url = args.roadfile
return url, m, b, k, v

We may offer two options for each parameter, one reflecting the mathematical
symbol (like –v) and one more descriptive text (like –velocity).

3 Visual exploration
This section explains how to load the data from the computation, stored as a
pickled list in the file bumpy.res, into various arrays, and how to visualize these
arrays. We want to produce the following plots:

• u(t) and u′(t) for t ≥ ts

• the spectrum of u(t), for t ≥ ts (using FFT) to see which frequencies that
dominate in the signal

• for each road shape, a plot of h(x), a(t), and u(t), for t ≥ ts

Test case. The simulation is run as

Terminal> python bumpy.py --v 10

meaning that all other parameters have their default values as specified in the
command_line_arguments function.

Importing array and plot functionality. The following two imports give
access to Matlab-style functions for plotting and computing with arrays:

from numpy import *
from matplotlib.pyplot import *

The Python community often prefers to prefix numpy by np and matplotlib
by plt or mpl:

import numpy as np
import matplotlib.pyplot as plt

However, we shall stick to the former import to make the code as close as possible
to the Matlab equivalent.
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Reading results from file. Loading the computational data from file back to
a list data must use the same module (cPickle or dill) as we used for writing
the data:

import cPickle as pickle
# or
import dill as pickle
outfile = open(’bumpy.res’, ’r’)
data = pickle.load(outfile)
outfile.close()

x, t = data[0:2]

Note that data first contains x and t, thereafter a sequence of 3-lists [h, F,
u]. With data[0:2] we extract the sublist with elements data[0] and data[1]
(0:2 means up to, but not including 2). All the remaining 3-lists [h, F, u] can
be extracted as data[2:].

Since now we concentrate on the part t ≥ ts of the data, we can grab the
corresponding parts of the arrays in the following way, using boolean arrays as
indices:

indices = t >= t_s # True/False boolean array
t = t[indices] # fetch the part of t for which t >= t_s
x = x[indices] # fetch the part of x for which t >= t_s

Indexing by a boolean array extracts all the elements corresponding to the True
elements in the index array.

Plotting u. A plot of u, corresponding to the second realization of the bumpy
road, is easy to create:

figure()
realization = 1
u = data[2+realization][2][indices]
plot(t, u)
title(’Displacement’)

Note that data[2:] holds the triplets [h,F,u], so the second realization is
data[3]. The u part of the triplet is then data[3][2], and the part of u where
t ≥ ts is then data[3][2][indices].

Figure 3 (left) shows the result.

Computing and plotting u′. Given a discrete function un, n = 0, . . . , N ,
the corresponding discrete derivative can be computed by

vn = un+1 − un−1

2∆t , n = 1, . . . , N − 1 . (6)

The values at the end points, v0 and vN , must be computed with less accurate
one-sided differences:

v0 = u1 − u0

∆t , vN = uN − uN−1

∆t
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Computing v = u′ by (6) for the part t ≥ ts is done by

v = zeros_like(u) # same length and data type as u
dt = t[1] - t[0] # time step
for i in range(1,u.size-1):

v[i] = (u[i+1] - u[i-1])/(2*dt)
v[0] = (u[1] - u[0])/dt
v[N] = (u[N] - u[N-1])/dt

Plotting of v is done by

figure()
plot(t, v)
legend([’velocity’])
xlabel(’t’)
title(’Velocity’)

Figure 3 (right) shows that the velocity is much more “noisy” than the displace-
ment.
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Figure 3: Displacement (left) and velocity (right) for t ≥ ts = 180.

Vectorized computation of u′. For large arrays, finite difference formulas
like (6) can be heavy to compute. A vectorized expression where the loop is
avoided is much more efficient:

v = zeros_like(u)
v[1:-1] = (u[2:] - u[:-2])/(2*dt)
v[0] = (u[1] - u[0])/dt
v[-1] = (u[-1] - u[-2])/dt

The challenging expression here is u[2:] - u[:-2]. The array slice u[2:]
starts at index 2 and goes to the very end of the array, i.e., the slice contains
u[2], u[3], ..., u[N]. The slice u[:-2] starts from the beginning of u and
goes up to, but not including the second last element, i.e., u[0], u[1], ...,
u[N-2]. The expression u[2:] - u[:-2] is then an array of length N-2 with
elements u[2]-u[0], u[3]-u[1], and so on, and with u[N]-u[N-2] as final
element. After dividing this array by 2*dt we have evaluated formula (6) for all
indices from 1 to N-2, which is the same as the slice 1:-1 (used on the left-hand
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side). Rather than using N (equal to u.size-1) in the last line above, we use
the -1 index for the last element and -2 for the second last element.

How efficient is this vectorization? The interactive IPython shell has a
convenient feature to test the efficiency of Python constructions:

In [1]: from numpy import zeros

In [2]: N = 1000000

In [3]: u = zeros(N)

In [4]: %timeit v = u[2:] - u[:-2]
1 loops, best of 3: 5.76 ms per loop

In [5]: v = zeros(N)

In [6]: %timeit for i in range(1,N-1): v[i] = u[i+1] - u[i-1]
1 loops, best of 3: 836 ms per loop

In [7]: 836/5.76
Out[20]: 145.13888888888889

This session show that the vectorized expression is 145 times faster than the
explicit loop!

3.1 Computing the spectrum of signals
The spectrum of a u(t) function, here represented by discrete values in the arrays
u and t, can be computed by the Python function

def frequency_analysis(u, t):
A = fft(u)
A = 2*A
dt = t[1] - t[0]
N = t.size
freq = arange(N/2, dtype=float)/N/dt
A = abs(A[0:freq.size])/N
# Remove small high frequency part
tol = 0.05*A.max()
for i in xrange(len(A)-1, 0, -1):

if A[i] > tol:
break

return freq[:i+1], A[:i+1]

Note here that we truncate that last part of the spectrum where the amplitudes
are small (this usually gives a plot that is easier to inspect).

In the present case, we utilize the frequency_analysis through

figure()
u = data[3][2][indices] # second realization of u
f, A = frequency_analysis(u, t)
plot(f, A)
title(’Spectrum of u’)

Figure 4 shows the amplitudes and that the dominating frequencies lie around
0.5 and 1 Hz.
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Figure 4: Spectra of displacement and excitation.

3.2 Multiple plots in the same figure
Finally, we can run through all the 3-lists [h, a, u] and visualize these curves
in the same plot figure:

for realization in range(len(data[2:])):
h, F, u = data[2+realization]
h = h[indices]
F = F[indices]
u = u[indices]

figure()
subplot(3, 1, 1)
plot(x, h, ’g-’)
legend([’h %d’ % realization])
hmax = (abs(h.max()) + abs(h.min()))/2
axis([x[0], x[-1], -hmax*5, hmax*5])
xlabel(’distance’); ylabel(’height’)

subplot(3, 1, 2)
plot(t, F)
legend([’F %d’ % realization])
xlabel(’t’); ylabel(’acceleration’)

subplot(3, 1, 3)
plot(t, u, ’r-’)
legend([’u %d’ % realization])
xlabel(’t’); ylabel(’displacement’)
savefig(’hFu%d.png’ % realization)
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Figure 5: First realization of a bumpy road, with corresponding excitation of
the wheel and resulting vertical vibrations.

If all the plot commands above are placed in a file, as in explore.py6, a final
show() call is needed to show the plots on the screen. On the other hand, the
commands are usually more conveniently performed in an interactive Python
shell, preferably IPython or IPython notebook.

4 Advanced topics
4.1 Symbolic computing via SymPy
Python has a package SymPy that offers symbolic computing. Here is a simple
introductory example where we differentiate a quadratic polynomial, integrate it
again, and find the roots:

>>> import sympy as sp
>>> x, a = sp.symbols(’x a’) # Define mathematical symbols
>>> Q = a*x**2 - 1 # Quadratic function
>>> dQdx = sp.diff(Q, x) # Differentiate wrt x
>>> dQdx
2*a*x
>>> Q2 = sp.integrate(dQdx, x) # Integrate (no constant)
>>> Q2
a*x**2
>>> Q2 = sp.integrate(Q, (x, 0, a)) # Definite integral

6https://github.com/hplgit/bumpy/blob/master/doc/src/src-bumpy/explore.py

21

https://github.com/hplgit/bumpy/blob/master/doc/src/src-bumpy/explore.py


>>> Q2
a**4/3 - a
>>> roots = sp.solve(Q, x) # Solve Q = 0 wrt x
>>> roots
[-sqrt(1/a), sqrt(1/a)]

One can easily convert a SymPy expression like Q into a Python function
Q(x, a) to be used for further numerical computing:

>>> Q = sp.lambdify([x, a], Q) # Turn Q into Py func.
>>> Q(x=2, a=3) # 3*2**2 - 1 = 11
11

Sympy can do a lot of other things. Here is an example on computing the
Taylor series of e−x sin(rx), where r is the smallest root of Q = ax2 − 1 = 0 as
computed above:

>>> f = sp.exp(-a*x)*sp.sin(roots[0]*x)
>>> f.series(x, 0, 4)
-x*sqrt(1/a) + x**3*(-a**2*sqrt(1/a)/2 + (1/a)**(3/2)/6) +
a*x**2*sqrt(1/a) + O(x**4)

4.2 Testing
Software testing in Python is best done with a unit test framework such as nose7

or pytest8. These frameworks can automatically run all functions starting with
test_ recursively in files in a directory tree. Each test_* function is called
a test function and must take no arguments and apply assert to a boolean
expression that is True if the test passes and False if it fails.

Example on a test function.
def halve(x):

"""Return half of x."""
return x/2.0

def test_halve():
x = 4
expected = 2
computed = halve(x)
# Compare real numbers using tolerance
tol = 1E-14
diff = abs(computed - expected)
assert diff < tol

Test function for the numerical solver. A frequently used technique to
test differential equation solvers is to just specify a solution and fit a source term
in the differential equation such that the specified solution solves the equation.
The initial conditions must be set according to the specified solution. This
technique is known as the method of manufactured solutions.

7https://nose.readthedocs.org/
8http://pytest.org/latest/
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Here we shall specify a solution that is quadratic or linear in t because such
lower-order polynomials will often be an exact solution of both the differential
equation and the finite difference equations. This means that the polynomial
should be reproduced to machine precision by our solver function.

We can use SymPy to find an appropriate F (t) term in the differential
equation such that a specified solution u(t) = I + V t + qt2 fits the equation
and initial conditions. With quadratic damping, only a linear u will solve the
discrete equation so in this case we choose u = I + V t.

We embed the SymPy calculations and the numerical calculations in a test
function:

def lhs_eq(t, m, b, s, u, damping=’linear’):
"""Return lhs of differential equation as sympy expression."""
v = sp.diff(u, t)
d = b*v if damping == ’linear’ else b*v*sp.Abs(v)
return m*sp.diff(u, t, t) + d + s(u)

def test_solver():
"""Verify linear/quadratic solution."""
# Set input data for the test
I = 1.2; V = 3; m = 2; b = 0.9; k = 4
s = lambda u: k*u
T = 2
dt = 0.2
N = int(round(T/dt))
time_points = np.linspace(0, T, N+1)

# Test linear damping
t = sp.Symbol(’t’)
q = 2 # arbitrary constant
u_exact = I + V*t + q*t**2 # sympy expression
F_term = lhs_eq(t, m, b, s, u_exact, ’linear’)
print ’Fitted source term, linear case:’, F_term
F = sp.lambdify([t], F_term)
u, t_ = solver(I, V, m, b, s, F, time_points, ’linear’)
u_e = sp.lambdify([t], u_exact, modules=’numpy’)
error = abs(u_e(t_) - u).max()
tol = 1E-13
assert error < tol

# Test quadratic damping: u_exact must be linear
u_exact = I + V*t
F_term = lhs_eq(t, m, b, s, u_exact, ’quadratic’)
print ’Fitted source term, quadratic case:’, F_term
F = sp.lambdify([t], F_term)
u, t_ = solver(I, V, m, b, s, F, time_points, ’quadratic’)
u_e = sp.lambdify([t], u_exact, modules=’numpy’)
error = abs(u_e(t_) - u).max()
assert error < tol

Using a test framework. We recommend to use pytest as test framework.
Subdirectories test* are examined for files test_*.py that have test functions
test_*(), and all such tests are executed by the following command:

Terminal> py.test -s
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The -s option makes all output from the tests appear in the terminal window.
To run the tests in a specific file tests/test_bumpy.py, do

Terminal> py.test -s tests/test_bumpy.py

4.3 Modules
Python software is frequently organized as modules, or in collection of modules,
called packages. A module enables sharing functions, variables, and classes
between programs and other modules.

It is very easy to make a module in Python. Just put all the functions and
global variables (and classes, if you have) you want to include in the module in
a file. If you have a main program calling functions or using global variables,
these statements will be executed with you import the module in other programs,
which is not what you want. Therefore, move the main program to a so-called
test block at the end of the module:

if __name__ == ’__main__’:
<statements in the main program>

The module file, say its name is mymod.py, now typically looks like

import module1
from module2 import func1, func2

def myfunc1(...):
...

def myfunc2(...):
...

if __name__ == ’__main__’:
<statements in the main program>

The name of the module mymod if the filename is mymod.py. During import
mymod or from mymod import *, the special Python variable __name__ equals
the name of the module and the test block with statements in the main program
will not be executed. However, if you run mymod.py as a program, __name__
equals __main__ and the main program will be executed. In this way, you can
have a single file that both acts as a library and that is an executable program.

A from mymod import * will import the global functions myfunc1 and
myfunc2, plus the global names module1, somefunc1, and somefunc2.

A Quick motivation for programming with Python
• Why Python?9

• Why Python for Scientific Computing?10

9http://www.pyzo.org/whypython.html
10http://fperez.org/py4science/warts.html
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B Scientific Python resources
Full tutorials on scientific programming with Python.

• Python Scientific Lecture Notes11 (from EuroSciPy tutorials, based on
Python Scientific12)

• Scientific Python Lectures as IPython notebooks13

• Stefan van der Walt’s lectures14

NumPy resources.

• NumPy Tutorial15

• NumPy User Guide16

• Advanced NumPy Tutorial17

• Advanced NumPy Course18

• NumPy Example List19

• NumPy Medkit20

• NumPy and SciPy Cookbook21

• NumPy for Matlab Users22

• NumPy for Matlab/R/IDL Users23

Useful resources.

• AstroPython24

• Talk on IPython by Fernando Perez25

11http://scipy-lectures.github.com/
12http://web.phys.ntnu.no/ ingves/Teaching/TFY4240/Assignments/PythonScientific.pdf
13https://github.com/jrjohansson/scientific-python-lectures
14https://github.com/stefanv/teaching
15http://www.scipy.org/Tentative_NumPy_Tutorial
16http://docs.scipy.org/doc/numpy/user/
17https://github.com/pv/advanced-numpy-tutorial
18http://scipy2010.blogspot.com/2010/06/tutorials-day-1-advanced-numpy.html
19http://www.scipy.org/Numpy_Example_List
20http://mentat.za.net/numpy/numpy_advanced_slides/
21http://www.scipy.org/Cookbook
22http://www.scipy.org/NumPy_for_Matlab_Users
23http://mathesaurus.sf.net
24http://www.astropython.org/
25http://www.youtube.com/watch?feature=player_embedded&v=F4rFuIb1Ie4
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• Useful software in the Scientific Python Ecosystem26

• IPython27

• Python(x,y)28

• Basic Motion Graphics with Python29

Some relevant Python books.

• Think Python30

• Learn Python The Hard Way31

• Dive Into Python32

• Think Like a Computer Scientist33

• Introduction to Python Programming34 (for scientists)

• A Primer on Scientific Programming with Python35 (slides36 are also
available)

• Python Scripting for Computational Science37

Course material on Python programming in general.

• The Official Python Tutorial38

• Python Tutorial on tutorialspoint.com39

• Interactive Python tutorial site40

• A Beginner’s Python Tutorial on wikibooks.org41

• Python Programming on wikibooks.org42

26http://fperez.org/py4science/starter_kit.html
27http://ipython.scipy.org/doc/manual/html
28http://code.google.com/p/pythonxy/wiki/Welcome
29http://www.yourmachines.org/tutorials/mgpy.html
30http://www.greenteapress.com/thinkpython/
31http://learnpythonthehardway.org/book/
32http://diveintopython.org/toc/index.html
33http://www.freenetpages.co.uk/hp/alan.gauld/
34http://femhub.com/textbook-python/python_en.pdf/
35http://goo.gl/SWEQlz
36http://hplgit.github.io/scipro-primer/slides/index.html
37http://goo.gl/q8tM7D
38http://docs.python.org/2/tutorial/
39http://www.tutorialspoint.com/python/
40http://www.learnpython.org/
41http://en.wikibooks.org/wiki/A_Beginner’s_Python_Tutorial
42http://en.wikibooks.org/wiki/Python_Programming/
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• Non-Programmer’s Tutorial for Python on wikibooks.org43

• Python For Beginners44

• Gentle Python introduction for high school45 (with associated IPython
notebooks46)

• A Gentle Introduction to Programming Using Python47 (MIT OpenCourse-
Ware)

• Introduction to Computer Science and Programming48 (MIT OpenCourse-
Ware with videos)

• Learning Python Programming Language Through Video Lectures49

• Python Programming Tutorials Video Lecture Course50 (Learners TV)

• Python Videos, Tutorials and Screencasts51

43http://en.wikibooks.org/wiki/Non-Programmer’s_Tutorial_for_Python_2.6
44http://www.pythonforbeginners.com/
45http://intropython.org
46https://github.com/ehmatthes/intro_programming
47http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-189-a-gentle-introduction-to-programming-using-python-january-iap-2008/
48http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-00-introduction-to-computer-science-and-programming-fall-2008/
49http://www.catonmat.net/blog/learning-python-programming-language-through-video-lectures/
50http://www.learnerstv.com/Free-Computers-Video-lectures-ltv163-Page1.htm
51http://showmedo.com/videotutorials/python
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