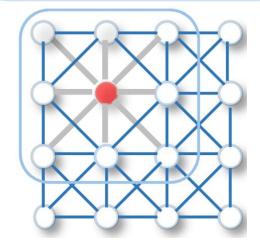


NeutronTP: Load-Balanced Distributed Full-Graph GNN Training with Tensor Parallelism

Xin Ai, Hao Yuan, Zeyu Ling, Qiange Wang, Yanfeng Zhang, Zhenbo Fu, Chaoyi Chen, Yu Gu, Ge Yu School of Computer Science and Engineering Northeastern University, Shenyang, China

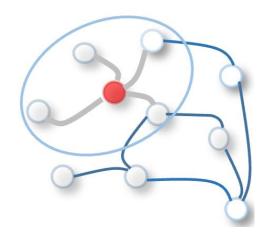
Why is it emerging?

DNN



Regular data in Euclidean space

GNN

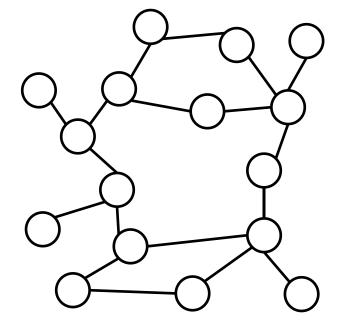


Irregular data in non-Euclidean space

Dependency of GNN data samples

DNN inputs

GNN inputs

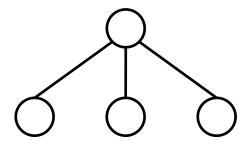


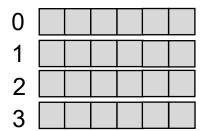
Independence

Dependencies

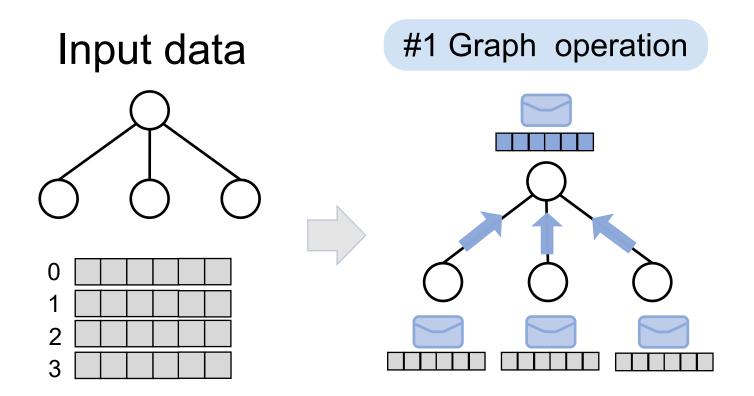
Two key stages of a GNN model

Input data

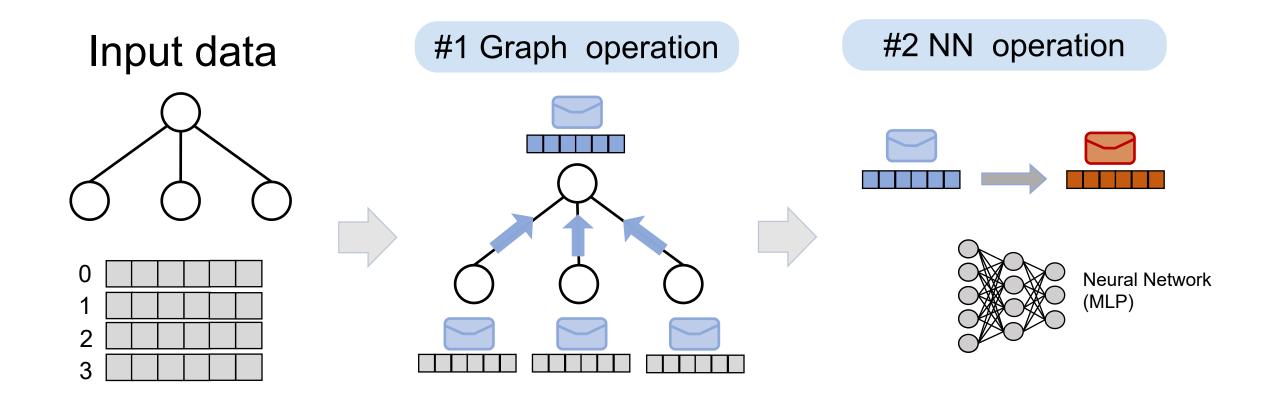




Two key stages of a GNN model

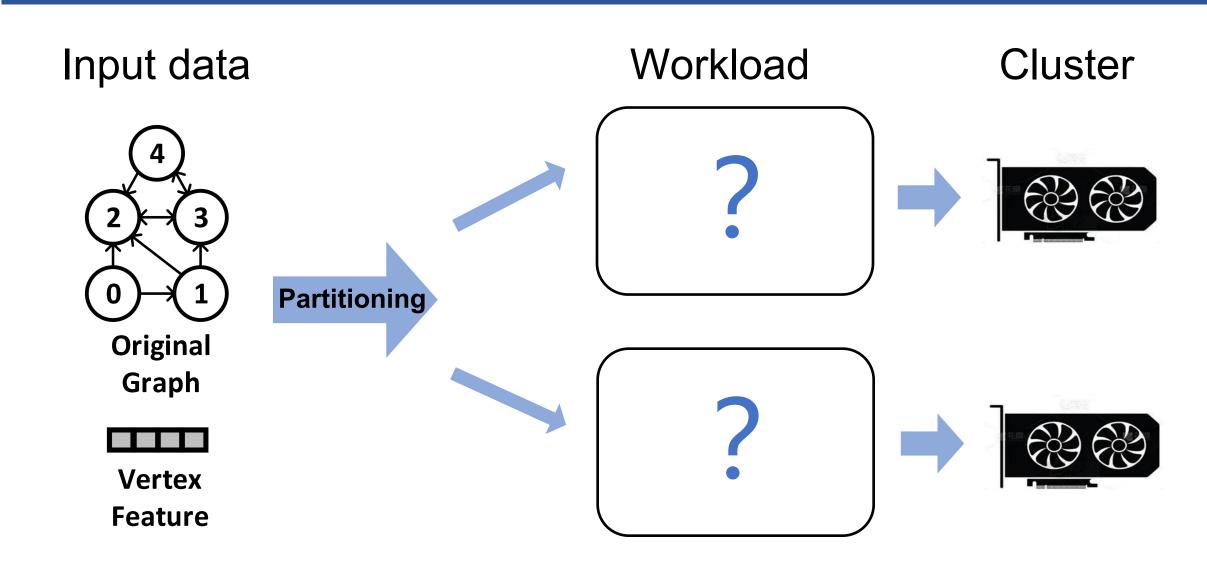


Two key stages of a GNN model

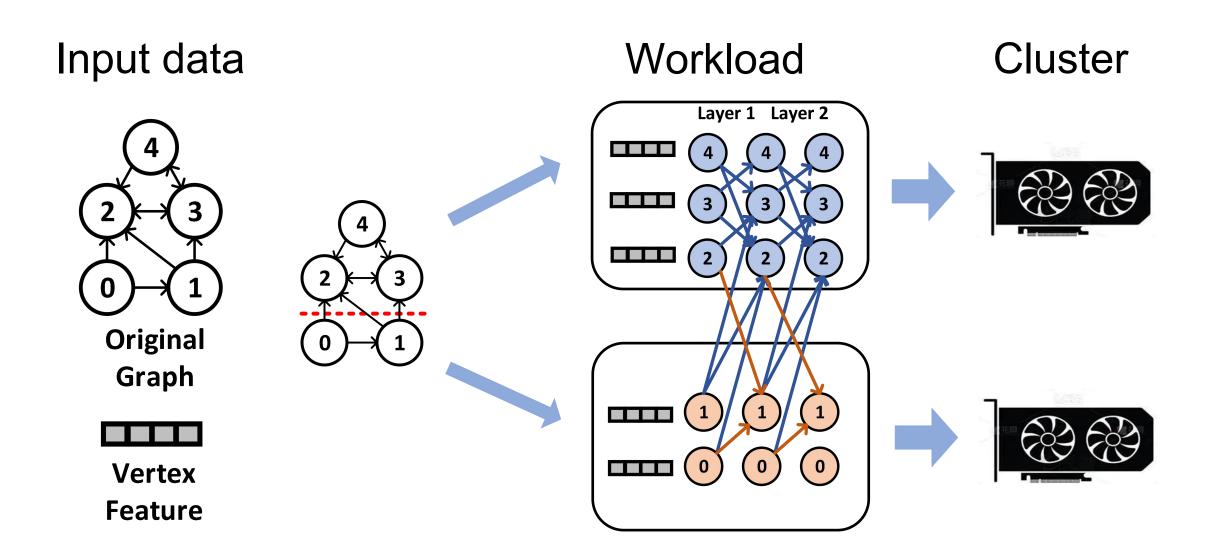


Distributed GNN Training

Workload partitioning is the key problem

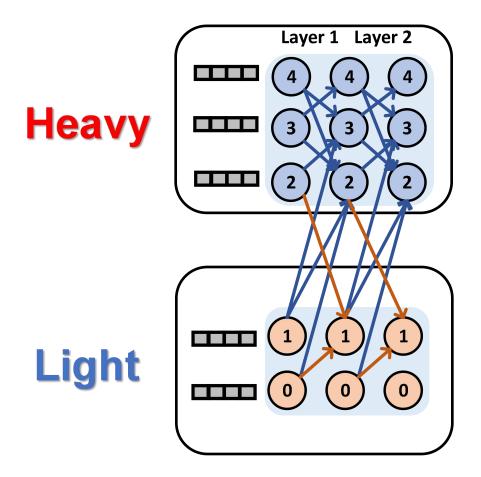


Graph partitioning is a common choice

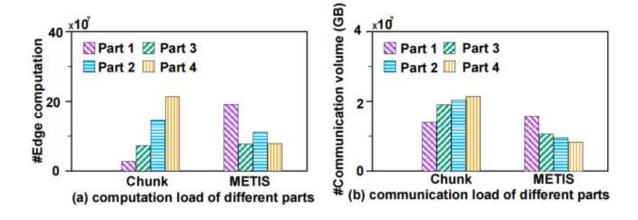


Graphs are difficult to partition uniformly

Workload



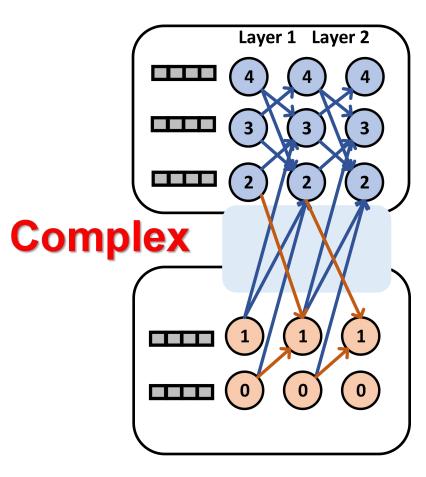
Workload imbalance



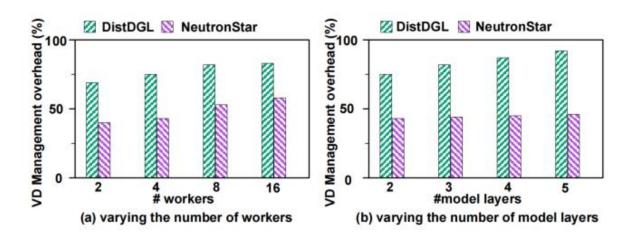
□ The workload difference is up to 7.1X.

Each node may have many remote neighbors

Workload



Complex vertex dependencis



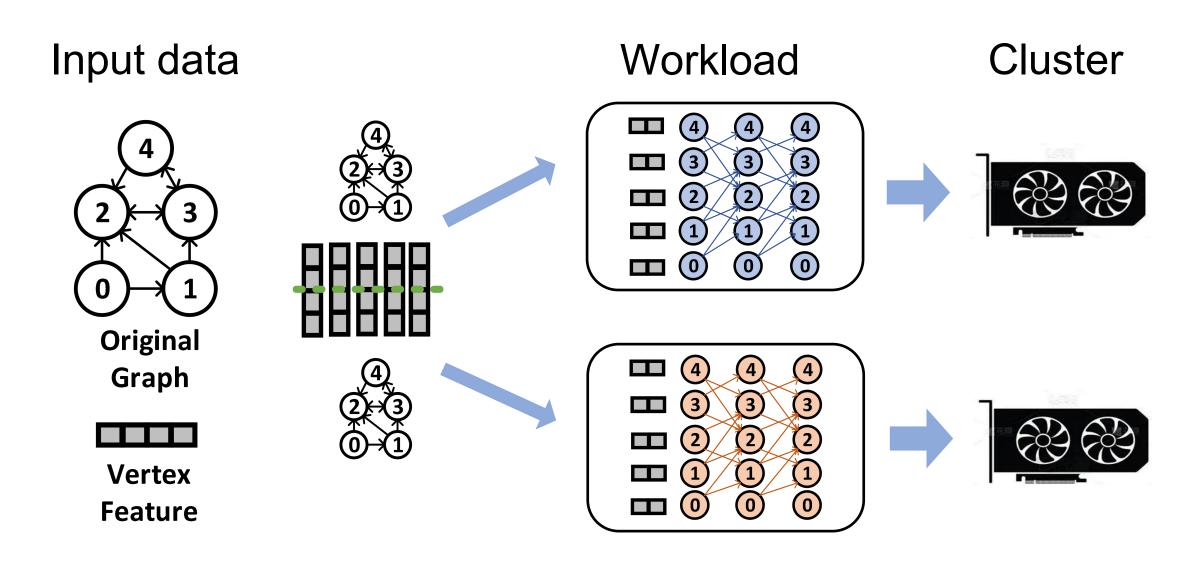
□ VD management overhead dominates the training process, accounting for 40%–90%.

Graph partitioning is the root of both problems

Do we really need to partition the graph?

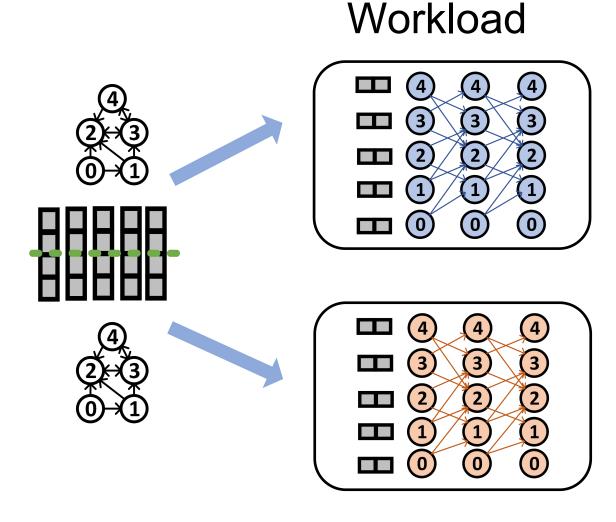
Our Solution: Tensor Parallelism

Partitioning features instead of graph structures



Our Solution: Tensor Parallelism

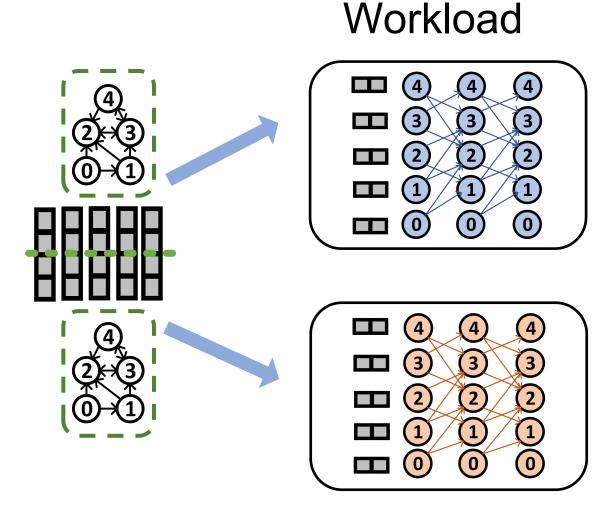
Partitioning features achieves balanced workload



- Evenly partitioning feature
- > The graph is replicated
- Completely balanced workload

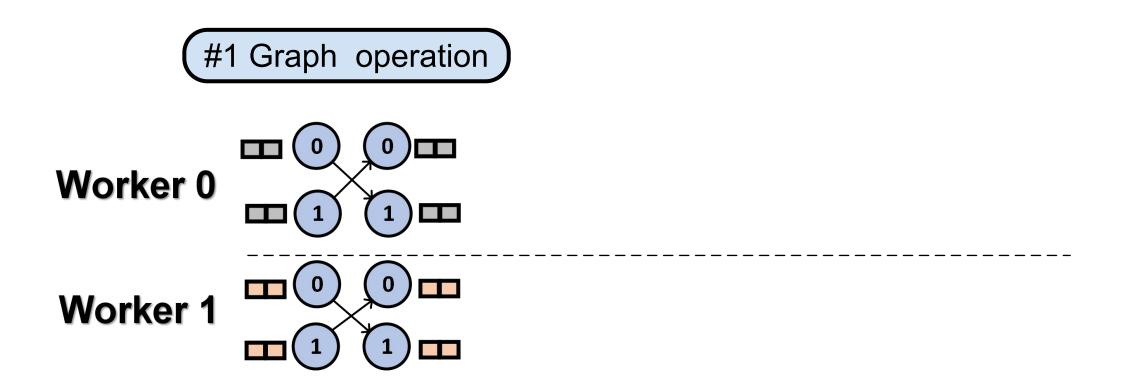
Our Solution: Tensor Parallelism

Each worker holds a full replica of the graph



- > Evenly partitioning feature
- > The graph is replicated
- Completely balanced workload

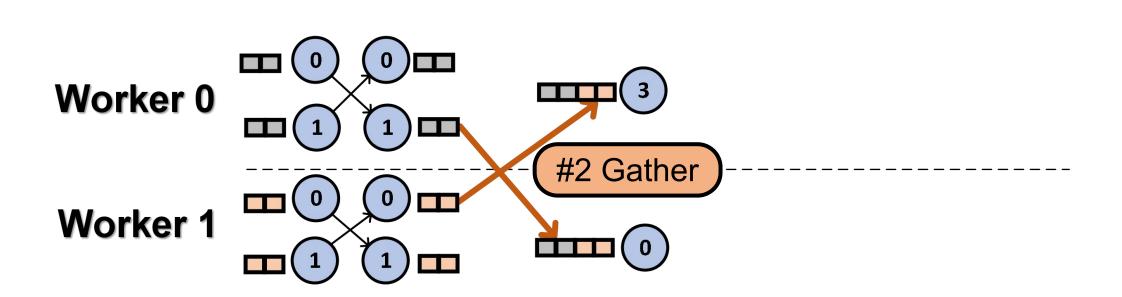
Workflow for a single layer



Graph aggregation with feature slicing

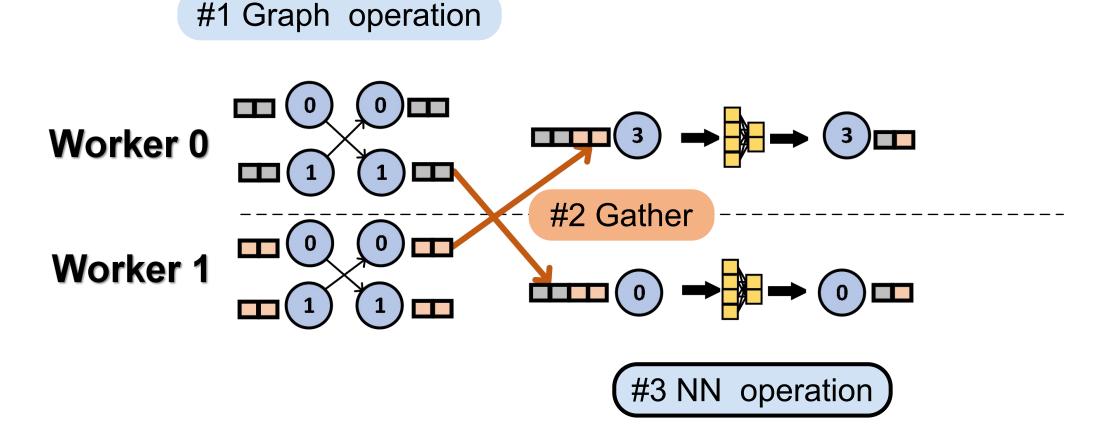
#1 Graph operation

Workflow for a single layer



Gathering full features

Workflow for a single layer



NN operation with full feature

Workflow for a single layer



Splitting feature slicing

Challenges in Tensor Parallelism

Tensor parallelism has two major challenges

Challeges #1: Frequent collective communication

- Gather and Split in every layer
- Substantial layer-wise sync

Challeges #2: Processing the entire graph on a single worker

- Entire graph and corresponding embedding slices
- Limited GPU memory in each worker

NeutronTP

A distributed GNN system based on tensor parallelism

Generalized decoupled training method

- Decouple two opertions in GNN training
- Keep comparable model accuracy

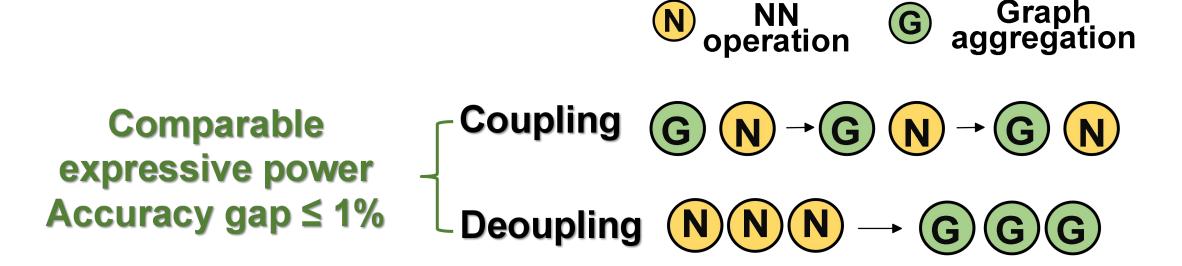
Memory-efficient task scheduling method

- Chunk-based task scheduling
- Inter-chunk pipelining

Generalized Decoupled Training Method

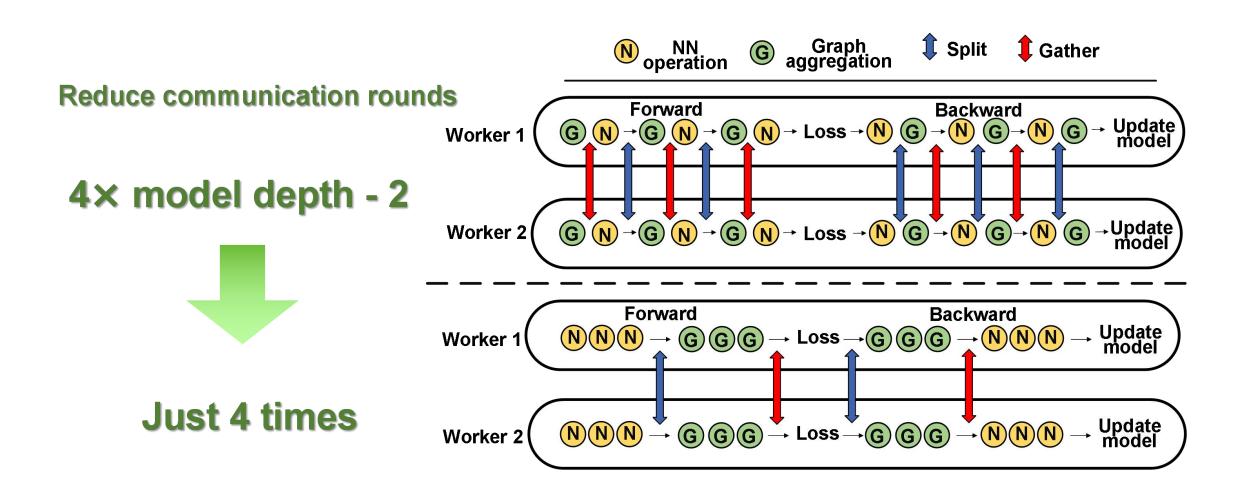
Decoupling two opertions in GNN training

Observation: The power of GNNs stems from NN and graph operations, not their coupling execution



Generalized Decoupled Training Method

Reduce collective communication frequency



Generalized Decoupled Training Method

Provide Convergence analysis

Convergence Analysis

- Decoupled training converges under infinite iterations
- Experiments demonstrate comparable accuracy

Support decoupled training for edge-based NN operation (e.g., GAT)

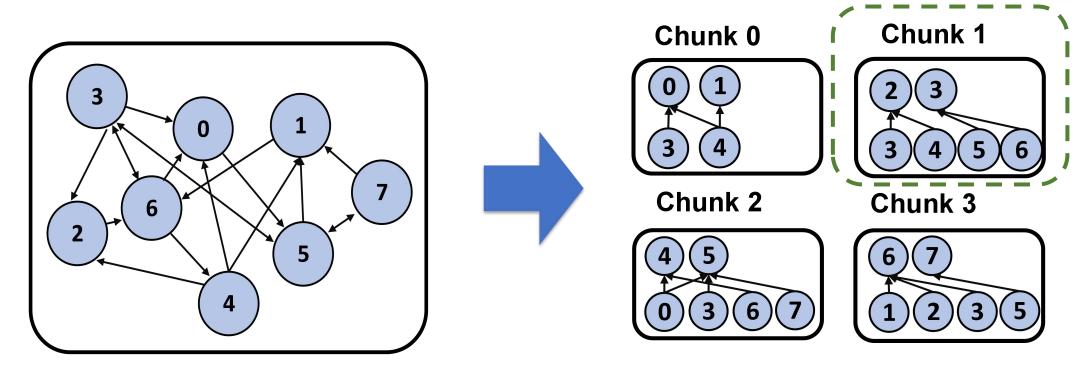
- Edge weight precomputing
- Tensor-data hybrid parallelism

Memory-efficient task scheduling method

Partition graph into chunks that can fit into GPU memory

Chunk-based task Scheduling

- Intra-node scheduling
- > Independent full-neighbor aggrregation



Fit into GPU

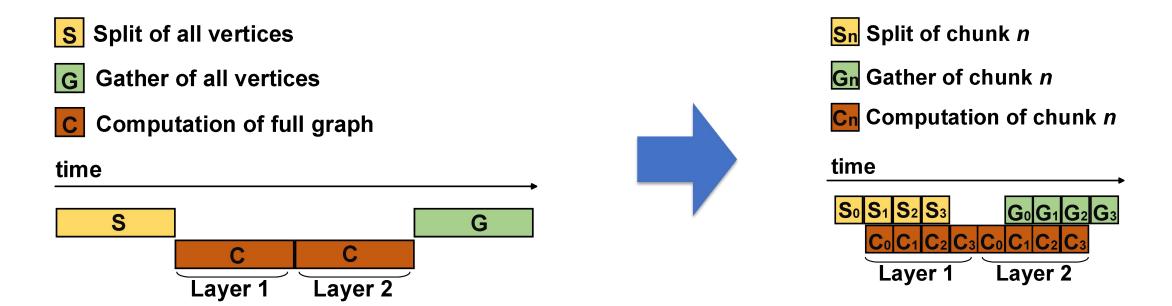
memory

Memory-efficient task scheduling method

Hidden communication latency

Inter-chunk pipelining

- Chunk-level gather and split
- > Computation-communication overlap



Experimental Setting

Competitors: DistDGL [Arxiv'20], Sancus [VLDB'22], NeutronStar [Sigmod'22].

Test Platforms:

A 16-node Aliyun ECS cluster¹ (Each: 16 vCPUs, 62GB RAM, 1 NVIDIA-T4 GPU)

Algorithms and Datasets:

- 2 Graph Neural Networks GCN, GAT
- > 6 real world graphs

Softeware Environment:

- ➤ Ubuntu 18.04 LTS
- > CUDA 10.1 (418.67 driver)

Table 1: Dataset description

Dataset	V	 E	ftr. dim	$\#\mathbb{L}$	hid. dim
Reddit (RDT)	0.23M	114M	602	41	256
Ogbn-products (OPT)	2.45M	61.68M	100	47	64
Ogbn-paper (OPR)	111.1M	1.616B	128	172	128
Friendster (FS)	65.6M	2.5B	256	64	128
Ogbn-mag (MAG)	1.9M	21M	128	349	64
Mag-lsc (LSC)	244.2M	1.7B	768	153	256

¹Clusters are connected via 6GigE

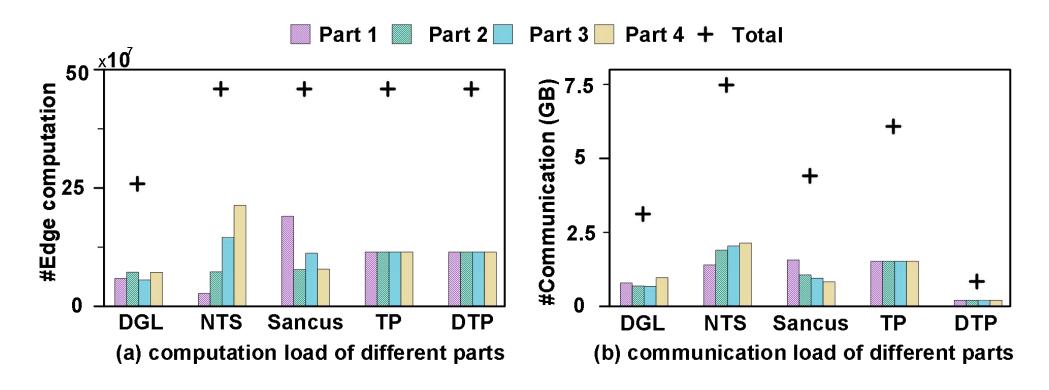
Overall Results

NeutronTP shows better performance than the competitors

- > 1.29X-6.36X faster than DistDGL
- ➤ 4.68X-8.72X faster than NeutronStar
- > 3.41X-4.81X faster than Sancus

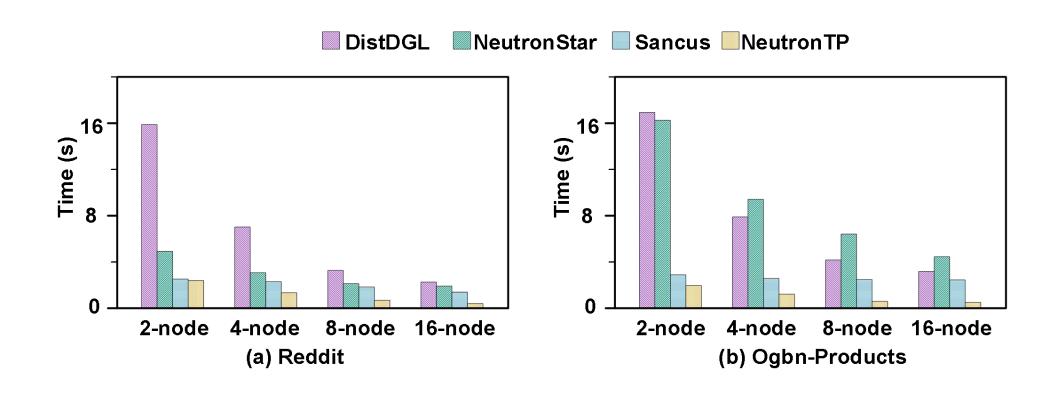
Model	Dataset	System	Runtime (s)				
			Computation		Communication		total
			max	min	max	min	total
GCN	RDT	DistDGL	0.15	0.11	2.12	1.38	2.27
		NeutronStar	0.86	0.77	1.17	0.87	1.92
		Sancus	0.35	0.31	0.82	0.71	1.17
		NeutronTP	0.39	0.38	0.19	0.18	0.40
	OPT	DistDGL	0.26	0.16	2.82	1.28	3.18
		NeutronStar	2.71	1.42	2.89	1.78	4.45
		Sancus	0.86	0.36	1.59	1.22	2.45
		NeutronTP	0.46	0.44	0.24	0.22	0.50
	OPR	DistDGL	5.35	4.19	20.1	11.21	25.4
		NeutronStar	-	-	-	-	OOM
		Sancus	-	-	-	-	OOM
		NeutronTP	95.8	95.2	53.6	49.4	134.4
	FS	DistDGL	136.4	118.9	323.4	197.5	459.5
		NeutronStar	-	-	-	-	OOM
		Sancus	-	-	-	-	OOM
		NeutronTP	74.3	73.5	32.9	29.4	90.5
GAT	RDT	DistDGL	0.75	0.52	2.17	1.49	2.92
		NeutronStar	-	-	-	-	OOM
		Sancus	- 1	-	-	-	OOM
		NeutronTP	0.92	0.88	0.48	0.42	1.29
	OPT	DistDGL	1.17	0.94	2.76	1.29	3.93
		NeutronStar	8.72	5.98	15.9	8.29	22.4
		Sancus	- 1	-	-	-	OOM
		NeutronTP	2.17	1.94	1.06	0.95	3.03
	OPR	DistDGL	8.40	6.48	21.1	11.7	29.5
		NeutronStar	- 1	-	-	-	OOM
		Sancus		-	-	-	OOM
		NeutronTP	154.3	136.4	98.9	84.7	235.4
	FS	DistDGL	157.8	110.4	419.8	283.7	577.6
		NeutronStar	-	-	-	-	OOM
		Sancus		-	-	-	OOM
		NeutronTP	115.2	92.5	72.1	61.4	167.9

Workload Analysis



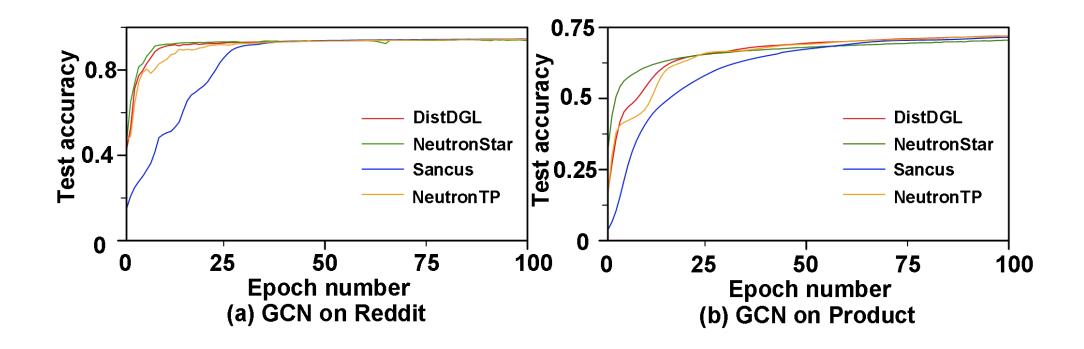
- □ Tensor Parallelism (TP) achieved a more balanced workload.
- Decouple training significantly reducing communication volume by up to 7.2 X.

Scalability Analysis



□ Across different cluster sizes, NeutronTP acheves an average speedup of 6.33X, 5.97X, and 2.69X compared to DistDGL, NeutronStar, and Sancus, respectively.

Accuracy Comparison



■ Decoupled training maintains comparable accuracy and convergence speed.

NeutronTP: Load-Balanced Distributed Full-Graph GNN Training with Tensor Parallelism.

GNN tensor parallelism

We propose a distributed GNN training method based on tensor parallelism, which eliminates cross-worker vertex dependencies and achieves complete load balancing.

NeutronTP: Load-Balanced Distributed Full-Graph GNN Training with Tensor Parallelism.

- GNN tensor parallelism
 - We propose a distributed GNN training method based on tensor parallelism, which eliminates cross-worker vertex dependencies and achieves complete load balancing.
- Generalized decoupling training method

We propose a generalized decoupling training method to separate NN operations from graph aggregation, significantly reducing communication frequency in GNN tensor parallelism.

NeutronTP: Load-Balanced Distributed Full-Graph GNN Training with Tensor Parallelism.

- □ GNN tensor parallelism
 - We propose a distributed GNN training method based on tensor parallelism, which eliminates cross-worker vertex dependencies and achieves complete load balancing.
- Generalized decoupling training method
 - We propose a generalized decoupling training method to separate NN operations from graph aggregation, significantly reducing communication frequency in GNN tensor parallelism.
- Memory-efficient task scheduling strategy
 - We propose a memory-efficient task scheduling strategy to support large-scale graph processing and overlap the communication and computation.

NeutronTP: Load-Balanced Distributed Full-Graph GNN Training with Tensor Parallelism.

- GNN tensor parallelism
 - We propose a distributed GNN training method based on tensor parallelism, which eliminates cross-worker vertex dependencies and achieves complete load balancing.
- Generalized decoupling training method
 - We propose a generalized decoupling training method to separate NN operations from graph aggregation, significantly reducing communication frequency in GNN tensor parallelism.
- Memory-efficient task scheduling strategy
 - We propose a memory-efficient task scheduling strategy to support large-scale graph processing and overlap the communication and computation.
- Delivering a fast distributed GNN system
 - We develop NeutronTP, a distributed system for full-graph GNN training that utilizes tensor parallelism to achieve fully balanced workloads and integrates a series of optimizations to achieve high performance.

NeutronTP: Load-Balanced Distributed Full-Graph GNN Training with Tensor Parallelism.

- □ GNN tensor parallelism
 - We propose a distributed GNN training method based on tensor parallelism, which eliminates cross-worker vertex dependencies and achieves complete load balancing.
- Generalized decoupling training method
 - We propose a generalized decoupling training method to separate NN operations from graph aggregation, significantly reducing communication frequency in GNN tensor parallelism.
- Memory-efficient task scheduling strategy
 - We propose a memory-efficient task scheduling strategy to support large-scale graph processing and overlap the communication and computation.
- Delivering a fast distributed GNN system
 - We develop NeutronTP, a distributed system for full-graph GNN training that utilizes tensor parallelism to achieve fully balanced workloads and integrates a series of optimizations to achieve high performance.
- The codes are publicly available on github
 - https://github.com/iDC-NEU/NeutronTP

Thanks for your listening

