
PYTHON

PROGRAMMING

EXERCISES,

GENTLY EXPLAINED

AL SWEIGART
AUTHOR OF AUTOMATE THE BORING STUFF WITH PYTHON

INVENTWITHPYTHON.COM

FOREWORD BY TREY HUNNER

Python Programming Exercises, Gently Explained.

Copyright © 2022 by Al Sweigart. All rights reserved.

No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any
information storage or retrieval system, beyond the Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International license without the
prior written permission of the copyright owner.

ISBN-13: 979-8-3553-8768-6

Cover Illustration: Al Sweigart

For information about this book and its content, please contact
al@inventwithpython.com.

Second printing.

The information in this book is distributed on an "As Is" basis, without warranty.
While every precaution has been taken in the preparation of this work, the
author shall not have any liability for any loss or damage caused or alleged to be
caused directly or indirectly by the information contained in it.

This work is licensed under the Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International (CC BY-NC-SA 4.0) license. For a copy of this license,
visit https://creativecommons.org/licenses/by-nc-sa/4.0/ or send a letter to
Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

DEDICATION

To Laura and Alexandra, and the rest of the next generation.

T A B L E O F C O N T E N T S

Introduction .. 1

Exercise #1: Hello, World! ... 5

Exercise #2: Temperature Conversion ... 8

Exercise #3: Odd & Even ... 11

Exercise #4: Area & Volume .. 13

Exercise #5: Fizz Buzz ... 16

Exercise #6: Ordinal Suffix .. 19

Exercise #7: ASCII Table ... 23

Exercise #8: Read Write File .. 26

Exercise #9: Chess Square Color .. 28

Exercise #10: Find and Replace ... 30

Exercise #11: Hours, Minutes, Seconds ... 34

Exercise #12: Smallest & Biggest .. 38

Exercise #13: Sum & Product .. 41

Exercise #14: Average .. 44

Exercise #15: Median ... 46

Exercise #16: Mode .. 49

Exercise #17: Dice Roll .. 52

Exercise #18: Buy 8 Get 1 Free .. 54

Exercise #19: Password Generator ... 58

Exercise #20: Leap Year... 62

Exercise #21: Validate Date ... 65

Exercise #22: Rock, Paper, Scissors ... 68

Exercise #23: 99 Bottles of Beer .. 70

Exercise #24: Every 15 Minutes ... 74

Exercise #25: Multiplication Table .. 76

Exercise #26: Handshakes .. 79

Exercise #27: Rectangle Drawing .. 82

Python Programming Exercises, Gently Explained

Exercise #28: Border Drawing ... 85

Exercise #29: Pyramid Drawing ... 88

Exercise #30: 3D Box Drawing .. 91

Exercise #31: Convert Integers To Strings ... 95

Exercise #32: Convert Strings To Integers ... 98

Exercise #33: Comma-Formatted Numbers ... 101

Exercise #34: Uppercase Letters .. 104

Exercise #35: Title Case ... 107

Exercise #36: Reverse String ... 110

Exercise #37: Change Maker.. 114

Exercise #38: Random Shuffle ... 117

Exercise #39: Collatz Sequence ... 120

Exercise #40: Merging Two Sorted Lists ... 123

Exercise #41: ROT 13 Encryption ... 127

Exercise #42: Bubble Sort .. 130

Appendix A: Solutions ... 134

About the Author .. 152

F O R E W O R D

I met Al Sweigart on a chilly April day in Montreal, Canada. It was PyCon 2015 and I got

together for lunch with a few new conference friends—including Al. I immediately clicked with him

because he’s a teacher, he enjoys playing with ideas, he’s concerned about the world, and he has an

absurd (read: wonderful) sense of humor. When I met Al, I didn't know he was famous, and neither

did he. It was during another meal when a reader of Automate the Boring Stuff with Python who had been

sitting with us discovered that the Al at our table was the Al Sweigart.

New conference friend: ―Wait, you’re Al Sweigart? Your book is amazing!‖

Me: ―Al, you didn’t tell me you were famous.‖

Al: ―I didn’t know I was famous either!‖

If this book is your first introduction to Al, you should know that he’s a pragmatic Python

programmer who is marvelous at embracing Python’s power to churn out code that solves real world

problems. I don't always agree with Al’s code style choices (camelCase in Python, Al?!) but Al

comments his code clearly and breaks down problems succinctly, and I know many Python

programmers who were introduced to the beauty of Python through Al’s work.

So now you know that I'm in the Al Sweigart fan club. But who am I, and why am I writing the

foreword for this book?

My name is Trey Hunner. I’m a Python team trainer and I run Python Morsels, which helps

Python developers grow their skills through Python exercises and detailed solution walk-throughs. I

started a Python exercise service because I know that the most important part of my team training

sessions is exercise time.

In fact, there’s a mantra I repeat to my students before every Python exercise session: We don’t

learn by putting information into our heads; we learn by trying to retrieve information from our

heads.

Learning happens when we attempt to use our memory. Whether we're remembering rote facts,

practicing muscle memory, or attempting to identify which tool in our mental toolbox applies to the

situation at hand. You can watch YouTube videos on Python all you want, but you’ll quickly forget

each new Python feature you see unless you actually use those features in your own code.

If you want to learn Python, you need to write Python code. That’s where Python exercises (and

this book) come in. You can't grow your Python skills by writing yet another ―hello world‖ program.

You need to write code that pushes you just outside your learning comfort zone (―the zone of

proximal development‖, as learning nerds call it).

I hope you'll find a few exercises that push you out of your comfort zone in this short book—

written by the Al Sweigart.

Trey Hunner, https://treyhunner.com/

Python Programming Exercises, Gently Explained

1

I N T R O D U C T I O N

―How can I get better at programming?‖ I see this common question often from those who have

started their programming journey. Of course, there are plenty of Python programming tutorials for

total beginners. However, these tutorials can carry the reader so far. After finishing these lessons,

readers often find their skills more than capable for yet another ―Hello, world!‖ tutorial but not

advanced enough to begin writing their own programs. They find themselves in the so-called ―tutorial

hell.‖ They learn the basic syntax of a programming language, but wonder where to begin when it

comes to applying them to their own programs.

Programming is like any other skill: it gets better with practice. I’ve chosen the exercises in this

book because they are short and straightforward. Each exercise involves only a handful of

programming concepts and you can solve them in a single session at the computer. If you’ve been

intimidated by ―competitive programming‖ or ―hacker challenge‖ websites, you’ll find these to be an

instructive and gentler way to level up your coding skills.

When I wrote Automate the Boring Stuff with Python, I wanted to teach programming to as many

non-programmers as possible. So, I released that book (and all of my other programming books)

under a Creative Commons license so they could be downloaded and shared for free from my website

https://inventwithpython.com. You can pay for a physical print book but it’s important to me to lower all

barriers to access, so the books are available online for free. I’ll cite some of these books in the

Further Reading section of the exercises in this book.

What Will This Book Do For You?

This book offers 42 programming exercises for inexperienced Python programmers. I’ve

gathered them into this book and combined them with plain-English explanations. You can read the

description for each exercise and start on the solution immediately. If you need further help, you can

read about the programming concepts you’ll need to know for the solution. You can also find out

about any surprising ―gotchas‖ you might encounter while writing your solution. Finally, if you still

need help, I provide a fill-in-the-blank template of the solution. Try to resist the temptation to

immediately jump to the hints; try to solve these exercises yourself first.

As you work through these exercises, you’ll find that some use the same coding techniques as

other problems. A lot of programming expertise develops this way: being able to solve a problem isn’t

about how smart you are but if you’ve seen similar problems before. My aim isn’t to stump you with

complex, contrived programming challenges but help you explore simple problems with gentle

explanations.

Prerequisites

While this isn’t a book to teach programming to complete beginners, you don’t need to be a

programming expert before tackling the challenges here. Any beginner’s resource, such as one of my

free books, Automate the Boring Stuff with Python or Invent Your Own Computer Games with Python, is more

Python Programming Exercises, Gently Explained

2

than enough to prepare you for these exercises. You can find these books for free at

https://inventwithpython.com. I also recommend Python Crash Course by Eric Matthes as an excellent book

for people with no programming experience. These books are published by No Starch Press, which

has an extensive library of high-quality Python books at https://nostarch.com/catalog/python.

To solve the exercises in this book, you should already know, or at least be familiar with, the

following Python programming concepts:

 Downloading and installing the Python interpreter

 Entering Python code into the interactive shell and into .py source code files

 Storing values in variables with the = assignment operator

 Knowing the difference between data types such as integers, strings, and floats

 Math, comparison, and Boolean operators such as +, <=, and not.

 How Python evaluates expressions such as (2 * 3) + 4 or 'Sun' + 'day'

 Getting and displaying text with the input() and print() functions

 Working with strings and string methods such as upper() or startswith()

 Using if, elif, and else flow control statements

 Using for loops and while loops, along with break and continue statements

 Defining your own functions with parameters and returning values

 Using data structures such as lists, tuples, and dictionaries

 Importing modules such as math or random to use their functions

You don’t need a mastery of classes and object-oriented programming. You don’t need to know

advanced concepts such as machine learning or data science. But if you’d like to eventually build your

skills to advanced topics like these, this book can help you start along that path.

Even if you’ve moved past the beginner stage, this book can help you assess your programming

ability. By the time you’re ready to start applying to junior software developer positions, you should be

able to solve all of the exercises in this book easily.

About the Exercises

The exercises are generally ordered from least to most difficult. But you don’t have to solve them

in order, so feel free to jump around to any exercises that you find interesting.

Each exercise has the following sections:

 Exercise Description – A description of the exercise, followed by a list of assert

statements that specify the results it expects from your solution program. There is also a list

of prerequisite concepts you’ll need to understand to solve this exercise. If you don’t

understand any of them, you can do an internet search of these terms along with ―Python‖

to find explanations of them. This is the only section you need to read to solve the exercise.

The later sections provide additional hints if you need them.

 Solution Design – Additional information about concepts you’ll need to know to write a

solution, along with a brief, gentle explanation of them.

Python Programming Exercises, Gently Explained

3

 Special Cases and Gotchas – Describes common mistakes or surprising ―gotchas‖ you

may encounter when writing code for the solution. Some exercises have special cases that

your solution will need to address.

 Solution Template – A copy of my own solution for the exercise, with selected parts

replaced by blanks for you to fill in. Your solution can still be correct if it doesn’t match

mine. But if you’re having trouble knowing where to start with your program, these

templates provide some but not all of the solution code.

Many solution programs to the exercises in this book are only a few lines of code long, and none

of them are longer than 50 lines. If you find yourself writing several hundred lines of code, you’re

probably overthinking the solution and should probably read the Exercise Description section

again.

Each exercise has several assert statements that detail the expected results from your solution.

In Python, assert statements are the assert keyword followed by a condition. They stop the

program with an AssertionError if their condition is False. They are a basic sanity check and,

for this book, tell you the expected behavior of your solution. For example, Exercise #3, ―Odd &

Even‖ has assert isOdd(9999) == True, which tells you that the correct solution involves the

isOdd() function returning True when passed an argument of 9999. Examine all of the assert

statements for an exercise before writing your solution program.

Some exercises don’t have assert statements, but rather show you the output that your

solution should produce. You can compare this output to your solution’s output to verify that your

solution is correct.

I provide complete solutions in Appendix A. But there are many ways to solve any given

programming problem. You don’t need to produce an identical copy of my solutions; it just needs to

pass the assert statements. I wrote my solutions to be conceptually simple and easy for the

intended audience of this book to understand. They produce correct results but aren’t necessarily the

fastest or most efficient solutions. As you get more experience programming, you can revisit the

exercises in this book and attempt to write high-performance solutions to them.

Python Programming Exercises, Gently Explained

4

Most of the solutions involve writing functions that return values based on the arguments passed

to the function call. In these cases, you can write your code assuming that the arguments are always of

the expected data type. So for example, if your function expects an integer, it will have to handle

arguments like 42, 0, or -3 but doesn’t have to handle arguments like 3.14 or 'hello'.

Keep in mind that there is a difference between a parameter and an argument. When we define a

function such as Exercise #3’s def isOdd(number):, the local variable number is a parameter.

When we call this function with isOdd(42), the integer 42 is an argument. The argument is passed to

the function and assigned as the value to the parameter. It’s easy to use ―parameter‖ and ―argument‖

interchangeably, but this book uses them in their correct technical sense.

Python is a practical language with many helpful functions in its standard library. Some exercises

will explicitly forbid you from using these functions. For example, Exercise #34, ―Uppercase Letters‖

tasks you to write code to convert a string to uppercase letters. Using Python’s built-in upper()

string method to do this for you would defeat the purpose of the exercise, so the Exercise

Description section points out that your solution shouldn’t call it.

I recommend solving the exercises in this book repeatedly until it becomes effortless. If you can

solve an exercise once, try solving it again a couple of weeks later or without looking at the hints in

the later sections. After a while, you’ll find yourself quickly being able to come up with strategies to

solve these exercises.

Let’s begin!

5

E X E R C I S E # 1 : H E L L O , W O R L D !

print('Hello, world!') → Hello, world!

 ―Hello, world!‖ is a common first program to write when learning any programming language. It

makes the text ―Hello, world!‖ appear on the screen. While not much of a program, it serves as a

simple test for whether the programmer has the language interpreter correctly installed, the computer

environment set up, and a basic understanding of how to write a complete program.

This exercise adds an additional step to collect keyboard input from the user. You’ll also need to

concatenate (that is, join together) string values to greet the user by name. The exercises in this book

are for those with some experience writing programs, so if this exercise is currently beyond your skill

level, I’d recommend reading some of the beginner resources I discussed in the Prerequisites section

of the Introduction.

Exercise Description

Write a program that, when run, greets the user by printing ―Hello, world!‖ on the screen. Then it

prints a message on the screen asking the user to enter their name. The program greets the user by

name by printing the ―Hello,‖ followed by the user’s name.

Let’s use ―Alice‖ as the example name. Your program’s output should look like this:

Hello, world!
What is your name?
Alice
Hello, Alice

Try to write a solution based on the information in this description. If you still have trouble

solving this exercise, read the Solution Design and Special Cases and Gotchas sections for

additional hints.

Prerequisite concepts: print(), strings, string concatenation

Python Programming Exercises, Gently Explained

6

Solution Design

There is no surprising design to the solution. It is a straightforward four-line program:

1. Print the text, ―Hello, world!‖

2. Print the text, ―What is your name?‖

3. Let the user enter their name and store this in a variable.

4. Print the text ―Hello,‖ followed by their name.

The program calls Python’s print() function to display string values on the screen. As always,

the quotes of the string aren’t displayed on the screen because those aren’t part of the string value’s

text, but rather mark where the string begins and ends in the source code of the program. The

program calls Python’s input() function to get the user input from the keyboard and stores this in a

variable.

The + operator is used to add numeric values like integers or floating-point numbers together,

but it can also create a new string value from the concatenation of two other string values.

Special Cases and Gotchas

Make sure that there is a space before printing the user’s name. If the user entered ―Alice‖, the

program should print 'Hello, Alice' and not 'Hello,Alice'.

Now try to write a solution based on the information in the previous sections. If you still have

trouble solving this exercise, read the Solution Template section for additional hints.

Solution Template

Try to first write a solution from scratch, But if you have difficulty, you can use the following

partial program as a starting place. Copy the following code from https://invpy.com/helloworld-template.py

and paste it into your code editor. Replace the underscores with code to make a working program:

Print "Hello, world!" on the screen:
____('Hello, world!')
Ask the user for their name:
____('What is your name?')
Get the user's name from their keyboard input:
name = ____()
Greet the user by their name:
print('Hello, ' + ____)

The complete solution for this exercise is given in Appendix A and https://invpy.com/helloworld.py.

You can view each step of this program as it runs under a debugger at https://invpy.com/helloworld-

debug/.

Further Reading

A ―Hello, world!‖ program is a good target program to create when learning a new programming

language. Most languages have a concept of standard streams for text-based, command-line

programs. These programs have a stream of input text and a stream of output text. The stream of

output text the program produces appears on the screen (via print() in Python). The stream of

Python Programming Exercises, Gently Explained

7

input text the program accepts comes from the keyboard (via input() in Python). The main benefit

of streams is that you can redirect them: the text output can go to a file instead of the screen, or a

program’s input can come from the output of another program instead of the keyboard. You can

learn more about the command-line interface, also called terminal windows, in the free book ―Beyond the

Basic Stuff with Python‖ at https://inventwithpython.com/beyond/. Command-line programs tend to be

simpler than graphical programs, and you can find nearly a hundred such programs in the free book,

The Big Book of Small Python Projects at https://inventwithpython.com/bigbookpython/.

8

E X E R C I S E # 2 : T E M P E R A T U R E

C O N V E R S I O N

 convertToCelsius(32) → 0.0
convertToFahrenheit(100) → 212

Converting between Celsius and Fahrenheit involves a basic calculation and provides a good

exercise for writing functions that take in a numeric input and return a numeric output. This exercise

tests your ability to use Python’s math operators and translate math equations into Python code.

Exercise Description

Write a convertToFahrenheit() function with a degreesCelsius parameter. This

function returns the number of this temperature in degrees Fahrenheit. Then write a function named

convertToCelsius() with a degreesFahrenheit parameter and returns a number of this

temperature in degrees Celsius.

Use these two formulas for converting between Celsius and Fahrenheit:

 Fahrenheit = Celsius × (9 / 5) + 32

 Celsius = (Fahrenheit - 32) × (5 / 9)

These Python assert statements stop the program if their condition is False. Copy them to

the bottom of your solution program. Your solution is correct if the following assert statements’

conditions are all True:

assert convertToCelsius(0) == -17.77777777777778
assert convertToCelsius(180) == 82.22222222222223
assert convertToFahrenheit(0) == 32
assert convertToFahrenheit(100) == 212
assert convertToCelsius(convertToFahrenheit(15)) == 15

Rounding errors cause a slight discrepancy:
assert convertToCelsius(convertToFahrenheit(42)) == 42.00000000000001

Try to write a solution based on the information in this description. If you still have trouble

solving this exercise, read the Solution Design and Special Cases and Gotchas sections for

additional hints.

Python Programming Exercises, Gently Explained

9

Prerequisite concepts: math operators

Solution Design

Think about how you can translate the mathematical equations in the Exercise Description into

Python code. For converting from Celsius to Fahrenheit, the ―Celsius‖ is the degreesCelsius

parameter, the × multiplication sign can be replaced by Python’s * operator, and the parentheses and

other math symbols have direct Python equivalents. You can think of the ―Fahrenheit =‖ and

―Celsius =‖ parts in the formula to Python return statements.

These functions can be one line long: a return statement that calculates the formula’s result and

returns it.

Special Cases and Gotchas

When converting 42 degrees Celsius to Fahrenheit and back to Celsius in the Assertions section,

you may have noticed that you don’t get exactly 42 but 42.00000000000001. This tiny fractional part is

caused by rounding errors. Computers cannot perfectly represent all numbers with fractional parts.

For example, if you enter print(0.1 + 0.1 + 0.1) into Python’s interactive shell, it doesn’t

print 0.3 but rather prints 0.30000000000000004.

The Python programming language doesn’t cause these rounding errors. Instead, they come from

the technical standard for floating-point numbers used by all computers. Every programming

language has these same rounding errors. However, unless you are writing software for a bank or

nuclear reactor, these minor inaccuracies probably don’t matter. The Further Reading section

Now try to write a solution based on the information in the previous sections. If you still have

trouble solving this exercise, read the Solution Template section for additional hints.

Solution Template

Try to first write a solution from scratch. But if you have difficulty, you can use the following

partial program as a starting place. Copy the following code from https://invpy.com/converttemp-

template.py and paste it into your code editor. Replace the underscores with code to make a working

program:

def convertToFahrenheit(degreesCelsius):
 # Calculate and return the degrees Fahrenheit:
 return ____ * (9 / 5) + 32

def convertToCelsius(degreesFahrenheit):
 # Calculate and return the degrees Celsius:
 return (____ - 32) * (____ / ____)

The complete solution for this exercise is given in Appendix A and https://invpy.com/converttemp.py.

You can view each step of this program as it runs under a debugger at https://invpy.com/converttemp-

debug/.

Python Programming Exercises, Gently Explained

10

Further Reading

You can use Python’s decimal module to represent fractional numbers more accurately than

floating-point values can. You can learn about this module at the Python Module of the Week blog at

https://pymotw.com/3/decimal/.

One programming technique to avoid rounding errors is to stick with integers: instead of

representing $1.25 as the float 1.25 you can use the integer 125 for 125 cents, or instead of

representing 1.5 minutes as the float 1.5 you can use the integer 90 for 90 seconds or even 90000

for 90,000 milliseconds. Integers and the decimal module’s Decimal objects don’t suffer from

rounding errors like floating-point numbers do.

11

E X E R C I S E # 3 : O D D & E V E N

isOdd(13) → True
isEven(13) → False

Determining if a number is even or odd is a common calculation that uses the modulo operator.

Like Exercise #2, ―Temperature Conversion,‖ the functions for this exercise’s solution functions can

be as little as one line long.

This exercise covers the % modulo operator, and the technique of using modulo-2 arithmetic to

determine if a number is even or odd.

Exercise Description

Write two functions, isOdd() and isEven(), with a single numeric parameter named

number. The isOdd() function returns True if number is odd and False if number is even. The

isEven() function returns the True if number is even and False if number is odd. Both

functions return False for numbers with fractional parts, such as 3.14 or -4.5. Zero is considered

an even number.

These Python assert statements stop the program if their condition is False. Copy them to

the bottom of your solution program. Your solution is correct if the following assert statements’

conditions are all True:

assert isOdd(42) == False
assert isOdd(9999) == True
assert isOdd(-10) == False
assert isOdd(-11) == True
assert isOdd(3.1415) == False
assert isEven(42) == True
assert isEven(9999) == False
assert isEven(-10) == True
assert isEven(-11) == False
assert isEven(3.1415) == False

Try to write a solution based on the information in this description. If you still have trouble

solving this exercise, read the Solution Design and Special Cases and Gotchas sections for

additional hints.

Prerequisite concepts: modulo operator

Python Programming Exercises, Gently Explained

12

Solution Design

You might not know how to write code that finds out if a number is odd or even. This kind of

exercise is easy to solve if you already know how to solve it, but difficult if you have to reinvent the

solution yourself. Feel free to look up answers to questions you have on the internet. Include the

programming language’s name for more specific results, such as ―python find out if a number is odd or

even‖. The question-and-answer website https://stackoverflow.com is usually at the top of the search

results and reliably has direct, high-quality answers. Looking up programming answers online isn’t

―cheating.‖ Professional software developers look up answers dozens of times a day!

The % modulo operator can mod a number by 2 to determine its evenness or oddness. The

modulo operator acts as a sort of ―division remainder‖ operator. If you divide a number by 2 and the

remainder is 1, the number must be odd. If the remainder is 0, the number must be even. For

example, 42 % 2 is 0, meaning that 42 is even. But 7 % 2 is 1, meaning that 7 is odd.

Floating-point numbers such as 3.1415 are neither odd nor even, so both isOdd() and

isEven() should return False for them.

Keep in mind that the isOdd() and isEven() function you write must return a Boolean True

or False value, not an integer 0 or 1. You need to use a == or != comparison operator to produce a

Boolean value: 7 % 2 == 1 evaluates to 1 == 1, which in turn evaluates to True.

Special Cases and Gotchas

Non-integer numbers such as 4.5 or 3.1415 are neither odd nor even, so both isOdd() and

isEven() should return False for them.

Now try to write a solution based on the information in the previous sections. If you still have

trouble solving this exercise, read the Solution Template section for additional hints.

Solution Template

Try to first write a solution from scratch. But if you have difficulty, you can use the following

partial program as a starting place. Copy the following code from https://invpy.com/oddeven-template.py

and paste it into your code editor. Replace the underscores with code to make a working program:

def isOdd(number):
 # Return whether number mod 2 is 1:
 return ____ % 2 == ____

def isEven(number):
 # Return whether number mod 2 is 0:
 return ____ % 2 == ____

The complete solution for this exercise is given in Appendix A and https://invpy.com/oddeven.py.

You can view each step of this program as it runs under a debugger at https://invpy.com/oddeven-debug/.

Further Reading

There are several uses of the % modulo operator. You can learn more about them in the tutorial

―Python Modulo in Practice: How to Use the % Operator‖ at https://realpython.com/python-modulo-

operator/.

13

E X E R C I S E # 4 : A R E A & V O L U M E

 area(10, 4) → 40
 perimeter(10, 4) → 28
 volume(10, 4, 5) → 200
surfaceArea(10, 4, 5) → 220

Area, perimeter, volume, and surface area are straightforward calculations. This exercise is similar

to Exercise #2, ―Temperature Conversion‖ and Exercise #3, ―Odd & Even.‖ Each function in this

exercise is a simple calculation and return statement. However, area and volume are slightly more

complicated because they involve multiple parameters. This exercise continues to challenge you to

translate mathematical formulas into Python code.

Exercise Description

You will write four functions for this exercise. The functions area() and perimeter() have

length and width parameters and the functions volume() and surfaceArea() have length,

width, and height parameters. These functions return the area, perimeter, volume, and surface

area, respectively.

The formulas for calculating area, perimeter, volume, and surface area are based on the length

(L), width (W), and height (H) of the shape:

 area = L × W

 perimeter = L + W + L + W

 volume = L × W × H

 surface area = (L × W × 2) + (L × H × 2) + (W × H × 2)

Area is a two-dimensional measurement from multiplying length and width. Perimeter is the sum

of all of the four one-dimensional lines around the rectangle. Volume is a three-dimensional

measurement from multiplying length, width, and height. Surface area is the sum of all six of the two-

dimensional areas around the cube. Each of these areas comes from multiplying two of the three

length, width, or height dimensions.

You can see what these formulas measure in Figure 4-1.

Python Programming Exercises, Gently Explained

14

Figure 4-1: The components of area, volume, perimeter, and surface area.

These Python assert statements stop the program if their condition is False. Copy them to

the bottom of your solution program. Your solution is correct if the following assert statements’

conditions are all True:

assert area(10, 10) == 100
assert area(0, 9999) == 0
assert area(5, 8) == 40
assert perimeter(10, 10) == 40
assert perimeter(0, 9999) == 19998
assert perimeter(5, 8) == 26
assert volume(10, 10, 10) == 1000
assert volume(9999, 0, 9999) == 0
assert volume(5, 8, 10) == 400
assert surfaceArea(10, 10, 10) == 600
assert surfaceArea(9999, 0, 9999) == 199960002
assert surfaceArea(5, 8, 10) == 340

Try to write a solution based on the information in this description. If you still have trouble

solving this exercise, read the Solution Design and Special Cases and Gotchas sections for

additional hints.

Prerequisite concepts: math operators, operator precedence

Solution Design

Use the same strategy you used in Exercise #2, ―Temperature Conversion‖ and translate the

math formulas into Python code. Replace the L, W, and H with the length, width, and height

parameters. Replace the + addition and × multiplication signs with the + and * Python operators.

These functions can be one line long: a return statement that calculates the result and returns it.

Python Programming Exercises, Gently Explained

15

Special Cases and Gotchas

Length, width, and height can only be positive numbers. You could write additional code that

checks if any of these are negative numbers, and raise an exception in that case. However, this isn’t a

requirement for this exercise.

Now try to write a solution based on the information in the previous sections. If you still have

trouble solving this exercise, read the Solution Template section for additional hints.

Solution Template

Try to first write a solution from scratch. But if you have difficulty, you can use the following

partial program as a starting place. Copy the following code from https://invpy.com/areavolume-

template.py and paste it into your code editor. Replace the underscores with code to make a working

program:

def area(length, width):
 # Return the product of the length and width:
 return ____ * ____

def perimeter(length, width):
 # Return the sum of the length twice and the width twice:
 return ____ * 2 + width * ____

def volume(length, width, height):
 # Return the product of the length, width, and height:
 return ____ * ____ * ____

def surfaceArea(length, width, height):
 # Return the sum of the area of each of the six sides:
 return ((length * ____) + (length * ____) + (width * ____)) * 2

The complete solution for this exercise is given in Appendix A and https://invpy.com/areavolume.py.

You can view each step of this program as it runs under a debugger at https://invpy.com/areavolume-

debug/.

16

E X E R C I S E # 5 : F I Z Z B U Z Z

fizzBuzz(5) → 1 2 Fizz 4 Buzz

Fizz buzz is a word game you can implement as a simple program. It became famous as a

screening question in coding interviews to quickly determine if candidates had any programming

ability whatsoever, so being able to solve it quickly leads to a good first impression.

This exercise continues our use of the modulo operator to determine if numbers are divisible by

3, 5, or both 3 and 5. ―Divisible by n‖ means that it can be divided by a number n with no remainder.

For example, 10 is divisible by 5, but 11 is not divisible by 5.

Exercise Description

Write a fizzBuzz() function with a single integer parameter named upTo. For the numbers 1

up to and including upTo, the function prints one of four things:

 Prints 'FizzBuzz' if the number is divisible by 3 and 5.

 Prints 'Fizz' if the number is only divisible by 3.

 Prints 'Buzz' if the number is only divisible by 5.

 Prints the number if the number is neither divisible by 3 nor 5.

Instead of printing each string or number on a separate line, print them without newlines. For

example, your solution is correct if calling fizzBuzz(35) produces the following output:

1 2 Fizz 4 Buzz Fizz 7 8 Fizz Buzz 11 Fizz 13 14 FizzBuzz 16 17 Fizz 19 Buzz Fizz 22
23 Fizz Buzz 26 Fizz 28 29 FizzBuzz 31 32 Fizz 34 Buzz

Try to write a solution based on the information in this description. If you still have trouble

solving this exercise, read the Solution Design and Special Cases and Gotchas sections for

additional hints.

Prerequisite concepts: modulo operator, end keyword argument for print(), for loops,

range() with two arguments

Python Programming Exercises, Gently Explained

17

Solution Design

This function requires a loop covering the integers 1 up to and including the upTo parameter.

The % modulo operator (which we used in Exercise #3, ―Odd & Even‖) can check if a number is

divisible by 3 or 5. If a number mod 3 is 0, then the number is divisible by 3. If a number mod 5 is 0,

then the number is divisible by 5. For example, enter the following into the interactive shell:

>>> 9 % 3
0
>>> 10 % 3
1
>>> 11 % 3
2

 9 % 3 evaluates to 0, so 9 is divisible by 3. Meanwhile, 10 % 3 evaluates to 1 and 11 % 3

evaluates 2, so 10 and 11 aren’t divisible by 3. To see the pattern behind the modulo operator, enter

the following code into the interactive shell:

>>> for i in range(20):
... print(str(i).rjust(2), i % 3, i % 5)
...
 0 0 0
 1 1 1
 2 2 2
 3 0 3
 4 1 4
 5 2 0
 6 0 1
 7 1 2
 8 2 3
 9 0 4
10 1 0
11 2 1
12 0 2
13 1 3
14 2 4
15 0 0
16 1 1
17 2 2
18 0 3
19 1 4

The columns of three numbers are a number from 0 to 19, the number modulo 3, and the

number modulo 5. Notice that the modulo 3 column cycles from 0 to 2 and the modulo 5 column

cycles from 0 to 4. The modulo result is 0 every 3rd and 5th number, respectively. And they are both

0 every 15th number (more on this in the Special Cases and Gotchas section.)

Back to our solution, the code inside the loop checks if the current number should cause the

program to either display one of ―Fizz‖, ―Buzz‖, ―FizzBuzz‖, or the number. This can be handled

with a series of if-elif-elif-else statements.

To tell the print() function to automatically print a space instead of a newline character, pass

the end=' ' keyword argument. For example, print('FizzBuzz', end=' ')

Special Cases and Gotchas

One common mistake when writing a Fizz Buzz program is checking if the number is divisible by

Python Programming Exercises, Gently Explained

18

3 or 5 before checking if it’s divisible by 3 and 5. You’ll want to check if a number is divisible by 3 and

5 first, because these numbers are also divisible by 3 and 5. But you want to be sure to display

'FizzBuzz' rather than 'Fizz' or 'Buzz'.

Another way to determine if a number is divisible by 3 and 5 is to check if it is divisible by 15.

This is because 15 is the least common multiple (LCM) of 3 and 5. You can either write the condition

as number % 3 == 0 and number % 5 == 0 or write the condition as number % 15 == 0.

The range() function tells for loops to go up to but not including their argument. The code for
i in range(10): sets i to 0 through 9, not 0 through 10. You can specify two arguments to tell

range() to start at a number besides 0. The code for i in range(1, 10): sets i to 1 to 9. In

our exercise, you want to include the number in upTo, so add 1 to it: range(1, upTo + 1)

Python’s list() function can take a range object returned from range() to produce a list of

integers. For example, if you need a list of integers 1 to 10, you can call list(range(1, 11)). If

you need every even number between 150 up to and including 200, you can call

list(range(150, 202, 2)):

>>> list(range(1, 11))
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> list(range(150, 202, 2))
[150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180,
182, 184, 186, 188, 190, 192, 194, 196, 198, 200]

Now try to write a solution based on the information in the previous sections. If you still have

trouble solving this exercise, read the Solution Template section for additional hints.

Solution Template

Try to first write a solution from scratch. But if you have difficulty, you can use the following

partial program as a starting place. Copy the following code from https://invpy.com/fizzbuzz-template.py

and paste it into your code editor. Replace the underscores with code to make a working program:

def fizzBuzz(upTo):
 # Loop from 1 up to (and including) the upTo parameter:
 for number in range(1, ____):
 # If the loop number is divisible by 3 and 5, print 'FizzBuzz':
 if number % 3 == ____ and number % 5 == ____:
 ____(____, end=' ')
 # Otherwise the loop number is divisible by only 3, print 'Fizz':
 elif ____ % 3 == 0:
 ____(____, end=' ')
 # Otherwise the loop number is divisible by only 5, print 'Buzz':
 elif number % 5 ____ 0:
 ____(____, end=' ')
 # Otherwise, print the loop number:
 else:
 ____(____, end=' ')

The complete solution for this exercise is given in Appendix A and https://invpy.com/fizzbuzz.py.

You can view each step of this program as it runs under a debugger at https://invpy.com/fizzbuzz-

debug/.

19

E X E R C I S E # 6 : O R D I N A L S U F F I X

ordinalSuffix(42) → '42nd'

While cardinal numbers refer to the size of a group of objects like ―four apples‖ or ―1,000 tickets‖,

ordinal numbers refer to the place of an object in an ordered sequence like ―first place‖ or ―30th

birthday‖. This exercise involves numbers but is more an exercise in processing text than doing math.

Exercise Description

In English, ordinal numerals have suffixes such as the ―th‖ in ―30th‖ or ―nd‖ in ―2nd‖. Write an

ordinalSuffix() function with an integer parameter named number and returns a string of the

number with its ordinal suffix. For example, ordinalSuffix(42) should return the string

'42nd'.

You may use Python’s str() function to convert the integer argument to a string. Python’s

endswith() string method could be useful for this exercise, but to maintain the challenge in this

exercise, don’t use it as part of your solution.

These Python assert statements stop the program if their condition is False. Copy them to

the bottom of your solution program. Your solution is correct if the following assert statements’

conditions are all True:

assert ordinalSuffix(0) == '0th'
assert ordinalSuffix(1) == '1st'
assert ordinalSuffix(2) == '2nd'
assert ordinalSuffix(3) == '3rd'
assert ordinalSuffix(4) == '4th'
assert ordinalSuffix(10) == '10th'
assert ordinalSuffix(11) == '11th'
assert ordinalSuffix(12) == '12th'
assert ordinalSuffix(13) == '13th'
assert ordinalSuffix(14) == '14th'
assert ordinalSuffix(101) == '101st'

Try to write a solution based on the information in this description. If you still have trouble

solving this exercise, read the Solution Design and Special Cases and Gotchas sections for

additional hints.

Prerequisite concepts: strings, in operator, slices, string concatenation

Python Programming Exercises, Gently Explained

20

Solution Design

The ordinal suffix depends on the last two digits in the number:

 If the last two digits end with 11, 12, or 13 then the suffix is ―th.‖

 If the number ends with 1, the suffix is ―st.‖

 If the number ends with 2, the suffix is ―nd.‖

 If the number ends with 3, the suffix is ―rd.‖

 Every other number has a suffix of ―th.‖

Our code becomes much easier to write if we call the str() function to convert the integer

value in number to a string first. Then you can use negative indexes in Python to find the last digit in

this string. You can store the string form in a variable named numberStr. Just as numberStr[0]

and numberStr[1] evaluate to the first and second character in numberStr, numberStr[-1]

and numberStr[-2] evaluate to the last and second to last character in numberStr. Therefore,

you can use numberStr[-1] to check if the last digit is 1, 2, or 3.

To find the last two digits, you can use Python slices to get a substring from a string by specifying

the start and end index of the slice. For example, numberStr[0:3] evaluates to the characters in

numberStr from index 0 up to, but not including, index 3. Enter the following in the interactive

shell:

>>> numberStr = '41096'
>>> numberStr[0:3]
'410'

If numberStr were '41096', numberStr[0:3] evaluates to '410'. If you leave out the

first index, Python assumes you mean ―the start of the string.‖ For example, numberStr[:3] means

the same thing as numberStr[0:3]. If you leave out the second index, Python assumes you mean

―the end of the string.‖ For example, numberStr[3:] means the same thing as

numberStr[3:len(numberStr)] or '96'. Enter the following into the interactive shell:

>>> numberStr = '41096'
>>> numberStr[:3]
'410'
>>> numberStr[3:]
'96'

You can combine slices and negative indexes. For example, numberStr[-2:] means the slice

starts from the second to last character in numberStr and continues to the end of the string. This is

how numberStr[-2:] becomes the shorthand for ―the last two characters in numberStr.‖ You

can use this to determine if the number ends with 11, 12, or 13. Enter the following into the

interactive shell:

>>> numberStr = '41096'
>>> numberStr[-2:]
'96'
>>> numberStr = '987654321'
>>> numberStr[-2:]
'21'

If you need to compare a variable to multiple values, you can use the in keyword and put the

values in a tuple. For example, instead of the lengthy condition numberStr[-2:] == '11' or
numberStr[-2:] == '12' or numberStr[-2:] == '13', you can have the equivalent and

Python Programming Exercises, Gently Explained

21

more concise numberStr[-2:] in ('11', '12', '13'). Enter the following into the

interactive shell:

>>> numberStr = '41096'
>>> numberStr[-2:] in ('11', '12', '13')
False
>>> numberStr = '512'
>>> numberStr[-2:] in ('11', '12', '13')
True

You’ll use a similar expression in this exercise’s solution.

Special Cases and Gotchas

Ensure that the number ends with 11, 12, or 13 before checking if it ends with 1, 2, or 3.

Otherwise, you may end up programming your function to return '213rd' instead of '213th'.

Also, notice that '0' has an ordinal suffix of ―th‖: '0th'.

Now try to write a solution based on the information in the previous sections. If you still have

trouble solving this exercise, read the Solution Template section for additional hints.

Solution Template

Try to first write a solution from scratch. But if you have difficulty, you can use the following

partial program as a starting place. Copy the following code from https://invpy.com/ordinalsuffix-

template.py and paste it into your code editor. Replace the underscores with code to make a working

program:

def ordinalSuffix(number):
 numberStr = str(number)

 # 11, 12, and 13 have the suffix th:
 if numberStr[____:] in ('11', ____, ____):
 return numberStr + 'th'
 # Numbers that end with 1 have the suffix st:
 if numberStr[____] == '1':
 return numberStr + 'st'
 # Numbers that end with 2 have the suffix nd:
 if numberStr[____] == ____:
 return numberStr + 'nd'
 # Numbers that end with 3 have the suffix rd:
 if numberStr[____] == ____:
 return numberStr + 'rd'
 # All other numbers end with th:
 return ____ + ____

The complete solution for this exercise is given in Appendix A and

https://invpy.com/ordinalsuffix.py. You can view each step of this program as it runs under a debugger at

https://invpy.com/ordinalsuffix-debug/.

Another Solution Design

Instead of using the str() function to convert the number to a string and examining the digits

at the end, you could leave it as an integer and determine the last digit with the % modulo operator.

Python Programming Exercises, Gently Explained

22

Any number modulo 10 evaluates to the digit in the one’s place of the number. You can use

modulo 100 to get the last two digits. For example, enter the following into the interactive shell:

>>> 42 % 10
2
>>> 12345 % 10
5
>>> 12345 % 100
45

Using this information, write an alternative solution for this exercise using modulo. If you need

additional hints, replace the underscores in the following solution template with code:

def ordinalSuffix(number):
 # 11, 12, and 13 have the suffix th:
 if ____ % 100 in (11, ____, ____):
 return str(number) + 'th'
 # Numbers that end with 1 have the suffix st:
 if ____ % 10 == ____:
 return str(number) + 'st'
 # Numbers that end with 2 have the suffix nd:
 if ____ % 10 == ____:
 return str(number) + 'nd'
 # Numbers that end with 3 have the suffix rd:
 if ____ % 10 == ____:
 return str(number) + 'rd'
 # All other numbers end with th:
 return ____(____) + ____

The complete solution for this exercise is given in Appendix A and

https://invpy.com/ordinalsuffix2.py. You can view each step of this program as it runs under a debugger

at https://invpy.com/ordinalsuffix2-debug/.

23

E X E R C I S E # 7 : A S C I I T A B L E

ASCII stands for American Standard Code for Information Interchange. Computers can only store

numbers, so each letter, numeral, punctuation mark, and every other character is assigned a number

called a code point. ASCII was a popular standard mapping of text characters to numbers. For example,

'Hello' would be represented by 72, 101, 108, 108, 111. Specifically, computers only store the ones

and zeros of binary numbers. These decimal numbers translate to 01001000, 01100101, 01101100,

01101100, 01101111 in binary. An ASCII table showed all the characters and their assigned ASCII

number values.

However, ASCII is an old and somewhat limited standard: it doesn’t have numbers assigned for

Cyrillic or Chinese characters, for example. And it is an American standard: it has a code point for the

dollar sign (code point 36) but not the British pound sign.

ASCII is no longer enough now that the internet has made global communication commonplace.

The newer Unicode character set provides code points for every character and is what Python uses for

its string values. Unicode’s code points are backward compatible with ASCII, so we can still easily use

Python to display an ASCII table.

In this exercise you’ll learn how to use the ord() and chr() functions to translate between

integers and text characters.

Exercise Description

Write a printASCIITable() function that displays the ASCII number and its corresponding

text character, from 32 to 126. (These are called the printable ASCII characters.)

Your solution is correct if calling printASCIITable() displays output that looks like the

following:

32
33 !
34 "
35 #
--more--
124 |
125 }
126 ~

Note that the character for ASCII value 32 is the space character, which is why it looks like

nothing is next to 32 in the output.

Python Programming Exercises, Gently Explained

24

Try to write a solution based on the information in this description. If you still have trouble

solving this exercise, read the Solution Design and Special Cases and Gotchas sections for

additional hints.

Prerequisite concepts: for loops, range() with two arguments, chr()

Solution Design

Python’s built-in chr() function accepts an integer argument of a code point and returns the

string of that code point’s character. The ord() function does the opposite: accepting a string of a

single character and returning its integer code point. The ―ord‖ is short for ―ordinal‖.

For example, enter the following into the interactive shell:

>>> ord('A')
65
>>> chr(65)
'A'
>>> ord('B')
66
>>> ord('!')
33
>>> 'Hello' + chr(33)
'Hello!'

The printASCIITable() function needs a for loop that starts at the integer 32 and goes up

to 126. Then, inside the loop, print the integer loop variable and what the chr() function returns for

that integer loop variable.

Special Cases and Gotchas

The upper bound argument to the range() function doesn’t include the number itself. This

means that for i in range(32, 126): covers the range of integers from 32 up to, but not

including, 126. If you want to include 126 (which we do for this exercise), pass 127 as the second

argument to range().

Now try to write a solution based on the information in the previous sections. If you still have

trouble solving this exercise, read the Solution Template section for additional hints.

Solution Template

Try to first write a solution from scratch. But if you have difficulty, you can use the following

partial program as a starting place. Copy the following code from https://invpy.com/asciitable-template.py

and paste it into your code editor. Replace the underscores with code to make a working program:

def printASCIITable():
 # Loop over integers 32 up to and including 126:
 for i in range(____, ____):
 # Print the integer and its ASCII text character:
 print(i, ____(i))

printASCIITable()

The complete solution for this exercise is given in Appendix A and https://invpy.com/asciitable.py.

Python Programming Exercises, Gently Explained

25

You can view each step of this program as it runs under a debugger at https://invpy.com/asciitable-

debug/.

Further Reading

If you’d like to learn more about Unicode, I recommend Ned Batchelder’s ―Pragmatic Unicode‖

blog post at https://nedbatchelder.com/text/unipain.html. He also gave a PyCon talk based on this blog

post that you can watch at https://youtu.be/sgHbC6udIqc. Unicode is often seen as a complicated topic,

but Ned breaks it down into understandable parts and what Python programmers need to know.

You can also see an ASCII table for yourself at https://en.wikipedia.org/wiki/ASCII.

https://en.wikipedia.org/wiki/ASCII

26

E X E R C I S E # 8 : R E A D W R I T E F I L E

File I/O, or file input/output, allows your programs to read and write data to files on the hard

drive. This exercise covers just the basics of writing text to a file with Python code and then reading

the text from the file you just created. File I/O is an important technique because it allows your

programs to save data so that work isn’t lost when the program closes.

Exercise Description

You will write three functions for this exercise. First, write a writeToFile() function with

two parameters for the filename of the file and the text to write into the file. Second, write an

appendToFile() function, which is identical to writeToFile() except that the file opens in

append mode instead of write mode. Finally, write a readFromFile() function with one parameter

for the filename to open. This function returns the full text contents of the file as a string.

These Python instructions should generate the file and the assert statement checks that the

content is correct:

writeToFile('greet.txt', 'Hello!\n')
appendToFile('greet.txt', 'Goodbye!\n')
assert readFromFile('greet.txt') == 'Hello!\nGoodbye!\n'

This code writes the text 'Hello!\n' and 'Goodbye!\n' to a file named greet.txt, then reads

in this file’s content to verify it is correct. You can delete the greet.txt file after running these

instructions program.

Try to write a solution based on the information in this description. If you still have trouble

solving this exercise, read the Solution Design and Special Cases and Gotchas sections for

additional hints.

Prerequisite concepts: text file reading and writing

Solution Design

Python’s built-in open() function returns a file object that you can use to read or write text

from and to the file. You should call open() with the with statement, like with
open(filename, mode) as fileObj:.

The valid arguments for the mode parameter are 'r' to read from text files, 'w' to write to text

files, and 'a' to append (that is, write at the end of) to text files. If no mode argument is given, then

the function defaults to read mode. Opening the file in write or append mode lets you call

Python Programming Exercises, Gently Explained

27

fileObj.write('text goes here'), which allows you to pass a string of text to write to the

file. Otherwise, in read mode calling fileObj.read() returns the file’s contents as a string.

Special Cases and Gotchas

If you open a file in write mode and the file doesn’t exist, then a blank file is created. If the file

does exist, it is overwritten with a blank file. Append mode, as opposed to write mode, adds text to

the end of the file without destroying the original content.

Now try to write a solution based on the information in the previous sections. If you still have

trouble solving this exercise, read the Solution Template section for additional hints.

Solution Template

Try to first write a solution from scratch. But if you have difficulty, you can use the following

partial program as a starting place. Copy the following code from https://invpy.com/readwritefile-

template.py and paste it into your code editor. Replace the underscores with code to make a working

program:

def writeToFile(filename, text):
 # Open the file in write mode:
 with open(filename, ____) as fileObj:
 # Write the text to the file:
 ____.write(text)

def appendToFile(filename, text):
 # Open the file in append mode:
 ____ open(filename, ____) as fileObj:
 # Write the text to the end of the file:
 ____.write(____)

def readFromFile(filename):
 # Open the file in read mode:
 ____ ____(filename) as fileObj:
 # Read all of the text in the file and return it as a string:
 return ____.read()

The complete solution for this exercise is given in Appendix A and

https://invpy.com/readwritefile.py. You can view each step of this program as it runs under a debugger at

https://invpy.com/readwritefile-debug/.

Further Reading

You can learn about reading and writing files in Chapters 9 and 10 of my book, Automate the

Boring Stuff with Python online at https://automatetheboringstuff.com/2e/.

28

E X E R C I S E # 9 : C H E S S S Q U A R E C O L O R

getChessSquareColor(8, 8) → 'white'
getChessSquareColor(2, 1) → 'black'

A chess board has a checker-pattern of white and black tiles. In this program, you’ll determine a

pattern to the color of the squares based on their column and row. This program challenges you to

take a real-world object such as a chess board, determine the patterns behind its design, and translate

that into Python code.

Exercise Description

Write a getChessSquareColor() function that has parameters column and row. The

function either returns 'black' or 'white' depending on the color at the specified column and

row. Chess boards are 8 x 8 spaces in size, and the columns and rows in this program begin at 0 and

end at 7 like in Figure 9-1. If the arguments for column or row are outside the 0 to 7 range, the

function returns a blank string.

Note that chess boards always have a white square in the top left corner.

Figure 9-1: A chess board with labeled columns and rows.

These Python assert statements stop the program if their condition is False. Copy them to

Python Programming Exercises, Gently Explained

29

the bottom of your solution program. Your solution is correct if the following assert statements’

conditions are all True:

assert getChessSquareColor(1, 1) == 'white'
assert getChessSquareColor(2, 1) == 'black'
assert getChessSquareColor(1, 2) == 'black'
assert getChessSquareColor(8, 8) == 'white'
assert getChessSquareColor(0, 8) == ''
assert getChessSquareColor(2, 9) == ''

Try to write a solution based on the information in this description. If you still have trouble

solving this exercise, read the Solution Design and Special Cases and Gotchas sections for

additional hints.

Prerequisite concepts: Boolean operators, modulo operator

Solution Design

There is a pattern to the colors of a chess board. If the column and row are both even or both

odd, then the space is white. If one is odd and the other is even, the space is black. Exercise #3, ―Odd

& Even‖ shows how the % modulo operator determines if a number (such as the one in the column

and row parameter) is even or odd. Use this to write a condition that determines if the oddness or

evenness of the column and row match.

Special Cases and Gotchas

The function should first check whether the column or row argument is outside the 0 to 7 range

of valid values. If so, the function should immediately return a blank string.

Now try to write a solution based on the information in the previous sections. If you still have

trouble solving this exercise, read the Solution Template section for additional hints.

Solution Template

Try to first write a solution from scratch. But if you have difficulty, you can use the following

partial program as a starting place. Copy the following code from https://invpy.com/chesscolor-template.py

and paste it into your code editor. Replace the underscores with code to make a working program:

def getChessSquareColor(column, row):
 # If the column and row is out of bounds, return a blank string:
 if column ____ or ____ > 8 or ____ < 1 or row ____:
 return ''

 # If the even/oddness of the column and row match, return 'white':
 if ____ % 2 == row % ____:
 return 'white'
 # If they don't match, then return 'black':
 else:
 return 'black'

The complete solution for this exercise is given in Appendix A and https://invpy.com/chesscolor.py.

You can view each step of this program as it runs under a debugger at https://invpy.com/chesscolor-

debug/.

30

E X E R C I S E # 1 0 : F I N D A N D R E P L A C E

findAndReplace('The fox', 'fox', 'dog') → 'The dog'

Find-and-replace is a standard feature in text editors, IDEs, and word processor software. Even

the Python language comes with a replace() string method since programs often use it. In this

exercise, you’ll reimplement this common string operation.

Exercise Description

Write a findAndReplace() function that has three parameters: text is the string with text to

be replaced, oldText is the text to be replaced, and newText is the replacement text. Keep in mind

that this function must be case-sensitive: if you are replacing 'dog' with 'fox', then the 'DOG' in

'MY DOG JONESY' won’t be replaced.

These Python assert statements stop the program if their condition is False. Copy them to

the bottom of your solution program. Your solution is correct if the following assert statements’

conditions are all True:

assert findAndReplace('The fox', 'fox', 'dog') == 'The dog'
assert findAndReplace('fox', 'fox', 'dog') == 'dog'
assert findAndReplace('Firefox', 'fox', 'dog') == 'Firedog'
assert findAndReplace('foxfox', 'fox', 'dog') == 'dogdog'
assert findAndReplace('The Fox and fox.', 'fox', 'dog') == 'The Fox and dog.'

Try to write a solution based on the information in this description. If you still have trouble

solving this exercise, read the Solution Design and Special Cases and Gotchas sections for

additional hints.

Prerequisite concepts: slices, indexes, len(), augmented assignment operator

Solution Design

While Python comes with several string methods, such as replace(), find(), and index(),

that could do this exercise for us, we’ll do the finding and replacing on our own.

At the beginning of the function, create a replacedText variable to hold the text with

replacements. It starts as a blank string. We’ll write code that copies the text in the text parameter to

replacedText, except for where it finds instances of oldText, in which case newText is copied

Python Programming Exercises, Gently Explained

31

to replacedText.

Create a while loop starts a variable named i at 0 and then keeps looping until i reaches the

length of the text string argument. This i variable points to an index in the text string. The code

inside the loop increases i by the length of oldText if it has found an instance of oldText in

text. Otherwise the code inside the loop increases i by 1 so it can examine the next character in

text.

The code inside the loop can examine the slice text[i:i + len(oldText)] to see if it

matches oldText. In that case, we append newText to replacedText and increase i by 1. If not,

we append just the text[i] character to replacedText and increase i by len(oldText). By

the time i reaches the end of text, the replacedText variable contains the finished string.

Figure 10-1 shows each step of this process if we were to call findAndReplace('A fox.',
'fox', 'dog').

Figure 10-1: Replacing 'fox' with 'dog' in 'A fox.'

Python has augmented assignment operators such as += and *=. These are shortcuts for assignment

statements that modify the value in a variable. Python has augmented assignment operators for several

operators:

Augmented Assignment Equivalent To

someVariable += 42 someVariable = someVariable + 42

someVariable -= 42 someVariable = someVariable - 42

Python Programming Exercises, Gently Explained

32

someVariable *= 42 someVariable = someVariable * 42

someVariable /= 42 someVariable = someVariable / 42

someVariable %= 42 someVariable = someVariable % 42

someVariable //= 42 someVariable = someVariable // 42

someVariable **= 42 someVariable = someVariable ** 42

For example, instead of typing someVariable = someVariable + 42, you could have the

equivalent someVariable += 42 as a more concise form. Python’s augmented assignment

operators include +=, -=, *=, /=, and %=.

The solution I give for this exercise includes the += augmented assignment operator.

Special Cases and Gotchas

Using an out-of-bounds index on a string results an error message: 'Hello'[9999] causes and

IndexError: string index out of range error. However, this doesn’t apply to slices.

Running 'Hello'[1:9999] results in 'ello' rather than an error message, even though 9999 is

greater than the largest index of the string, 4.

Keep this in mind when comparing slices with strings. For example, the slice text[5:8] might

evaluate to a string of 3 characters because 8 - 5 is 3. But if this slice’s indexes are towards the end of

the text string, it could evaluate to a string of 2, 1, or 0 characters. So think of the slice text[5:8] as

being at most 3 characters long.

For example, enter the following into the interactive shell for an example:

>>> 'elephant'[5:8]
'ant'
>>> 'gazelle'[5:8]
'le'
>>> 'turtle'[5:8]
'e'
>>> 'moose'[5:8]
''

Now try to write a solution based on the information in the previous sections. If you still have

trouble solving this exercise, read the Solution Template section for additional hints.

Solution Template

Try to first write a solution from scratch. But if you have difficulty, you can use the following

partial program as a starting place. Copy the following code from https://invpy.com/findandreplace-

template.py and paste it into your code editor. Replace the underscores with code to make a working

program:

def findAndReplace(text, oldText, newText):
 replacedText = ____

Python Programming Exercises, Gently Explained

33

 i = ____
 while i < len(____):
 # If index i in text is the start of the oldText pattern, add
 # the replacement text:
 if text[i:i + len(____)] == oldText:
 # Add the replacement text:
 replacedText += ____
 # Increment i by the length of oldText:
 i += len(____)
 # Otherwise, add the characters at text[i] and increment i by 1:
 else:
 replacedText += ____[i]
 i += ____
 return replacedText

The complete solution for this exercise is given in Appendix A and https://invpy.com/
findandreplace.py. You can view each step of this program as it runs under a debugger at

https://invpy.com/ findandreplace-debug/.

34

E X E R C I S E # 1 1 : H O U R S , M I N U T E S ,

S E C O N D S

getHoursMinutesSeconds(90) → '1m 30s'

Websites often use relative timestamps such as ―3 days ago‖ or ―about 3h ago‖ so the user

doesn’t need to compare an absolute timestamp to the current time. In this exercise, you write a

function that converts a number of seconds into a string with the number of hours, minutes, and

seconds.

Exercise Description

Write a getHoursMinutesSeconds() function that has a totalSeconds parameter. The

argument for this parameter will be the number of seconds to be translated into the number of hours,

minutes, and seconds. If the amount for the hours, minutes, or seconds is zero, don’t show it: the

function should return '10m' rather than '0h 10m 0s'. The only exception is that

getHoursMinutesSeconds(0) should return '0s'.

These Python assert statements stop the program if their condition is False. Copy them to

the bottom of your solution program. Your solution is correct if the following assert statements’

conditions are all True:

assert getHoursMinutesSeconds(30) == '30s'
assert getHoursMinutesSeconds(60) == '1m'
assert getHoursMinutesSeconds(90) == '1m 30s'
assert getHoursMinutesSeconds(3600) == '1h'
assert getHoursMinutesSeconds(3601) == '1h 1s'
assert getHoursMinutesSeconds(3661) == '1h 1m 1s'
assert getHoursMinutesSeconds(90042) == '25h 42s'
assert getHoursMinutesSeconds(0) == '0s'

For an additional challenge, break up 24 hour periods into days with a ―d‖ suffix. For example,

getHoursMinutesSeconds(90042) would return '1d 1h 42s'.

Try to write a solution based on the information in this description. If you still have trouble

solving this exercise, read the Solution Design and Special Cases and Gotchas sections for

additional hints.

Python Programming Exercises, Gently Explained

35

Prerequisite concepts: join(), append(), lists, string concatenation, while loops

Solution Design

One hour is 3600 seconds, one minute is 60 seconds, and one second is… 1 second. Our

solution can have variables that track the number of hours, minutes, and seconds in the final result

with variables hours, minutes, and seconds. The code subtracts 3600 from the totalSeconds

while increasing hours by 1. Then the code subtracts 60 from totalSeconds while increasing

minutes by 1. The seconds variable can then be set to whatever remains in totalSeconds.

After calculating hours, minutes, and seconds, you should convert those integer amounts into

strings with respective 'h', 'm', and 's' suffixes like '1h' or '30s'. Then you can append them

to a list that initially starts as empty. Then the join() list method can join these strings together with

a single space separating them: from the list ['1h', '30s'] to the string '1h 30s'. For example,

enter the following into the interactive shell:

>>> hms = ['1h', '30s']
>>> ' '.join(hms)
'1h 30s'

The function then returns this space-separated string.

If you’re unfamiliar with the join() string method, you can enter help(str.join) into the

interactive shell to view its documentation, or do an internet search for ―python join‖.

Special Cases and Gotchas

The first special case your function should check for is if the totalSeconds parameter is set to

0. In this case, the function can immediately return '0s'.

The final result string shouldn’t include hours, minutes, or seconds if the amount of those is zero.

For example, your program should return '1h 12s' but not '1h 0m 12s'.

Also, it’s important to subtract the larger amounts first. Otherwise, you would, for example,

increase hours by 0 and minutes by 120 instead of increase hours by 2 and minutes by 0.

Now try to write a solution based on the information in the previous sections. If you still have

trouble solving this exercise, read the Solution Template section for additional hints.

Solution Template

Try to first write a solution from scratch. But if you have difficulty, you can use the following

partial program as a starting place. Copy the following code from https://invpy.com/hoursminutesseconds-

template.py and paste it into your code editor. Replace the underscores with code to make a working

program:

def getHoursMinutesSeconds(totalSeconds):
 # If totalSeconds is 0, just return '0s':
 if totalSeconds == ____:
 return ____

 # Set hours to 0, then add an hour for every 3600 seconds removed from
 # totalSeconds until totalSeconds is less than 3600:
 hours = 0

Python Programming Exercises, Gently Explained

36

 while totalSeconds ____ 3600:
 hours += ____
 totalSeconds -= ____

 # Set minutes to 0, then add a minute for every 60 seconds removed from
 # totalSeconds until totalSeconds is less than 60:
 minutes = 0
 while totalSeconds >= ____:
 minutes += 1
 totalSeconds -= ____

 # Set seconds to the remaining totalSeconds value:
 seconds = ____

 # Create an hms list that contains the string hour/minute/second amounts:
 hms = []
 # If there are one or more hours, add the amount with an 'h' suffix:
 if hours > ____:
 ____.append(str(____) + 'h')
 # If there are one or more minutes, add the amount with an 'm' suffix:
 if minutes > 0:
 hms.append(____(minutes) + 'm')
 # If there are one or more seconds, add the amount with an 's' suffix:
 if seconds > 0:
 hms.append(str(seconds) + ____)

 # Join the hour/minute/second strings with a space in between them:
 return ' '.join(____)

The complete solution for this exercise is given in Appendix A and

https://invpy.com/hoursminutesseconds.py. You can view each step of this program as it runs under a

debugger at https://invpy.com/hoursminutesseconds-debug/.

Alternate Solution Design

Alternatively, instead of subtractions in a loop you can use Python’s // integer division operator to

see how many 3600 amounts (for hours) or 60 amounts (for minutes) fit into totalSeconds. To get

the remaining amount in totalSeconds after removing the seconds accounted for hours and

minutes, you can use Python’s % modulo operator.

For example, if totalSeconds were 10000, then 10000 // 3600 evaluates to 2, telling you

that there are two hours in 10,000 seconds. Then 10000 % 3600 evaluates to 2800, telling you

there are 2,800 seconds left over after removing the two hours from 10,000 seconds. You would then

run 2800 // 60 to find the number of minutes in 2,800 seconds and 2800 % 60 to find the

number of seconds remaining after removing those minutes.

Alternate Solution Template

Try to first write a solution from scratch. But if you have difficulty, you can use the following

partial program as a starting place. Copy the following code from https://invpy.com/hoursminutesseconds2-

template.py and paste it into your code editor. Replace the underscores with code to make a working

program:

def getHoursMinutesSeconds(totalSeconds):

Python Programming Exercises, Gently Explained

37

 # If totalSeconds is 0, just return '0s':
 if totalSeconds == ____:
 return ____

 # Set hours to how many times 3600 seconds can divide
 # totalSeconds. Then set totalSeconds to the remainder:
 if totalSeconds >= 3600:
 hours = totalSeconds // 3600
 totalSeconds = totalSeconds % 3600
 else:
 hours = 0

 # Set minutes to how many times 60 seconds can divide
 # totalSeconds. Then set totalSeconds to the remainder:
 if totalSeconds >= 60:
 minutes = totalSeconds // 60
 totalSeconds = totalSeconds % 60
 else:
 minutes = 0

 # Set seconds to the remaining totalSeconds value:
 seconds = ____

 # Create an hms list that contains the string hour/minute/second amounts:
 hms = []
 # If there are one or more hours, add the amount with an 'h' suffix:
 if hours > ____:
 ____.append(str(____) + 'h')
 # If there are one or more minutes, add the amount with an 'm' suffix:
 if minutes > 0:
 hms.append(____(minutes) + 'm')
 # If there are one or more seconds, add the amount with an 's' suffix:
 if seconds > 0:
 hms.append(str(seconds) + ____)

 # Join the hour/minute/second strings with a space in between them:
 return ' '.join(____)

The complete solution for this exercise is given in Appendix A and

https://invpy.com/hoursminutesseconds2.py. You can view each step of this program as it runs under a

debugger at https://invpy.com/hoursminutesseconds2-debug/.

38

E X E R C I S E # 1 2 : S M A L L E S T & B I G G E S T

getSmallest([28, 25, 42, 2, 28]) → 2

Python’s built-in min() and max() functions return the smallest and biggest numbers in a list of

numbers passed, respectively. In this exercise, you’ll reimplement the behavior of these functions.

This is the sort of problem that is trivial for a human to solve by hand if the list of numbers is

short. However, if the list contains thousands, millions, or billions of numbers, you’ll need to program

a computer to perform the calculation.

Exercise Description

Write a getSmallest() function that has a numbers parameter. The numbers parameter will

be a list of integer and floating-point number values. The function returns the smallest value in the

list. If the list is empty, the function should return None. Since this function replicates Python’s

min() function, your solution shouldn’t use it.

These Python assert statements stop the program if their condition is False. Copy them to

the bottom of your solution program. Your solution is correct if the following assert statements’

conditions are all True:

assert getSmallest([1, 2, 3]) == 1
assert getSmallest([3, 2, 1]) == 1
assert getSmallest([28, 25, 42, 2, 28]) == 2
assert getSmallest([1]) == 1
assert getSmallest([]) == None

Try to write a solution based on the information in this description. If you still have trouble

solving this exercise, read the Solution Design and Special Cases and Gotchas sections for

additional hints.

When you are done with this exercise, write a getBiggest() function which returns the

biggest number instead of the smallest number.

Prerequisite concepts: len(), for loops, lists, None value

Python Programming Exercises, Gently Explained

39

Solution Design

Think about how you would solve this problem without a computer, given a list of numbers

written on paper. You would use the first number as the smallest number, and then read every

number after it. If the next number is smallest than the smallest number you’ve seen so far, it

becomes the new smallest number. Let’s look at a small example. Figure 12-1 shows how looping

over the list [28, 25, 42, 2, 28] would affect the contents of a variable named smallest

that tracks the smallest number seen so far.

Figure 12-1: The value in smallest contains the smallest integer found so far as the for loop
iterates over the list [28, 25, 42, 2, 28].

Creates a variable named smallest to track the smallest value found so far and set it to the first

value in the list to start. Then have a for loop that loops over every number in the list from left to

right, and if the number is less than the current value in smallest, it becomes the new value in

smallest. After the loop finishes, the function returns the smallest value.

Special Cases and Gotchas

The function should first check if the list is empty. In that case, return None. And by starting the

smallest variable to the first number in a non-empty numbers list, you can guarantee that

smallest is always initialized to a value from the list.

Now try to write a solution based on the information in the previous sections. If you still have

trouble solving this exercise, read the Solution Template section for additional hints.

Python Programming Exercises, Gently Explained

40

Solution Template

Try to first write a solution from scratch. But if you have difficulty, you can use the following

partial program as a starting place. Copy the following code from https://invpy.com/smallest-template.py

and paste it into your code editor. Replace the underscores with code to make a working program:

def getSmallest(numbers):
 # If the numbers list is empty, return None:
 if len(____) == ____:
 return None

 # Create a variable that tracks the smallest value so far, and start
 # it off a the first value in the list:
 smallest = numbers[____]
 # Loop over each number in the numbers list:
 for number in ____:
 # If the number is smaller than the current smallest value, make
 # it the new smallest value:
 if ____ < smallest:
 ____ = number
 # Return the smallest value found:
 ____ smallest

The complete solution for this exercise is given in Appendix A and https://invpy.com/smallest.py.

You can view each step of this program as it runs under a debugger at https://invpy.com/smallest-debug/.

Further Reading

The benefit of writing a computer program to do a simple task like finding the smallest number

in a list is that a computer can process a list of millions of numbers in seconds. We can simulate this

by having the computer generate one million random numbers in a list, and then pass that list to our

getSmallest() function. On my computer, this program takes a few seconds, and most of that

time is spent displaying the million numbers on the screen.

Write the following program and save it in a file named testsmallest.py. Run it from the same folder

as your smallest.py file so that it can import it as a module:

import random, smallest

numbers = []
for i in range(1000000):
 numbers.append(random.randint(1, 1000000000))
print('Numbers:', numbers)
print('Smallest number is', smallest.getSmallest(numbers))

When run, this program displays the million numbers between 1 and 1,000,000,000 it generated,

along with the smallest number in that list.

41

E X E R C I S E # 1 3 : S U M & P R O D U C T

 calculateSum([2, 4, 6, 8, 10]) → 30
calculateProduct([2, 4, 6, 8, 10]) → 3840

Python’s built-in sum() function returns the sum of the list of numbers passed for its argument.

In this exercise, you’ll reimplement this behavior for your calculateSum() function and also

create a calculateProduct() function.

Exercise Description

Write two functions named calculateSum() and calculateProduct(). They both have a

parameter named numbers, which will be a list of integer or floating-point values. The

calculateSum() function adds these numbers and returns the sum while the

calculateProduct() function multiplies these numbers and returns the product. If the list passed

to calculateSum() is empty, the function returns 0. If the list passed to calculateProduct()

is empty, the function returns 1. Since this function replicates Python’s sum() function, your solution

shouldn’t call.

These Python assert statements stop the program if their condition is False. Copy them to

the bottom of your solution program. Your solution is correct if the following assert statements’

conditions are all True:

assert calculateSum([]) == 0
assert calculateSum([2, 4, 6, 8, 10]) == 30
assert calculateProduct([]) == 1
assert calculateProduct([2, 4, 6, 8, 10]) == 3840

Try to write a solution based on the information in this description. If you still have trouble

solving this exercise, read the Solution Design and Special Cases and Gotchas sections for

additional hints.

Prerequisite concepts: lists, indexes, for loops, augmented assignment operator

Solution Design

For calculating a sum in calculateSum(), create a variable named result to store the

Python Programming Exercises, Gently Explained

42

running sum result. This variable starts at 0, and while the program loops over each number in the

numbers parameter, each number is added to this running sum. The same is done in

calculateProduct(), except the result variable starts at 1 and is multiplied by each number.

Special Cases and Gotchas

You might be tempted to use a variable named sum to store the running sum. However, in

Python this name is already used for the built-in sum() function. Reusing this name for a local

variable means we’d lose the ability to call the original sum() function for the rest of the function’s

code because we have overwritten sum to the value we put in it rather than Python’s sum() function.

You want to avoid reusing the names of Python’s built-in functions by overwriting them, as it could

cause odd bugs in your code. Some commonly overwritten Python names are all, any, date,

email, file, format, hash, id, input, list, min, max, object, open, random, set, str,

sum, test, and type. Don’t use these names for your own variables.

Also, the sum of an empty list of numbers should be 0. The product of an empty list of numbers

should be 1. When calculating the product of several numbers, begin the running product result at 1

and not 0. If you start it at 0, all multiplications result in 0 and your calculateProduct()

function will return 0 every time. In mathematics, the numbers 0 and 1 are called the additive identity

and multiplicative identity, respectively. Adding the additive identity (0) to a number results in that same

number, while multiplying the multiplicative identity (1) with a number results in that same number.

For example, 12 + 0 is just 12 and 12 × 1 is just 12 too.

Now try to write a solution based on the information in the previous sections. If you still have

trouble solving this exercise, read the Solution Template section for additional hints.

Solution Template

Try to first write a solution from scratch. But if you have difficulty, you can use the following

partial program as a starting place. Copy the following code from https://invpy.com/sumproduct-

template.py and paste it into your code editor. Replace the underscores with code to make a working

program:

def calculateSum(numbers):
 # Start the sum result at 0:
 result = ____
 # Loop over all the numbers in the numbers parameter, and add them
 # to the running sum result:
 for number in ____:
 result += ____
 # Return the final sum result:
 return ____

def calculateProduct(numbers):
 # Start the product result at 1:
 result = ____
 # Loop over all the numbers in the numbers parameter, and multiply
 # them by the running product result:
 for number in ____:
 result ____ number
 # Return the final product result:
 return ____

The complete solution for this exercise is given in Appendix A and https://invpy.com/sumproduct.py.

Python Programming Exercises, Gently Explained

43

You can view each step of this program as it runs under a debugger at https://invpy.com/sumproduct-

debug/.

Further Reading

Just like in Exercise #12 ―Smallest & Biggest‖ we can generate a list of one million numbers, and

then calculate the sum and product of these numbers. Multiplying one million numbers creates an

astronomically large number, so we’ll limit our test to a mere ten thousand numbers. Write the

following program and save it in a file named testsumproduct.py. Run it from the same folder as your

sumproduct.py file so that it can import it as a module:

import random, sumproduct

numbers = []
for i in range(10000):
 numbers.append(random.randint(1, 1000000000))
print('Numbers:', numbers)
print(' Sum is', sumproduct.calculateSum(numbers))
print('Product is', sumproduct.calculateProduct(numbers))

When run, this program displays the million numbers between 1 and 1,000,000,000 it generated,

along with the sum and product of the numbers in that list.

44

E X E R C I S E # 1 4 : A V E R A G E

average([12, 20, 37]) → 23

Averages are an essential statistical tool, and computers make it easy to calculate the average of

millions or billions of numbers. The average is the sum of a set of the numbers divided by the amount

of numbers. For example, the average of 12, 1, and 5 is 6, because 12 + 1 + 5 is 18 and 18 / 3 is 6.

This and the following two exercises challenge you to make Python solve these statistics calculations.

Exercise Description

Write an average() function that has a numbers parameter. This function returns the

statistical average of the list of integer and floating-point numbers passed to the function. While

Python’s built-in sum() function can help you solve this exercise, try writing the solution without

using it.

Passing an empty list to average() should cause it to return None.

These Python assert statements stop the program if their condition is False. Copy them to

the bottom of your solution program. Your solution is correct if the following assert statements’

conditions are all True:

assert average([1, 2, 3]) == 2
assert average([1, 2, 3, 1, 2, 3, 1, 2, 3]) == 2
assert average([12, 20, 37]) == 23
assert average([0, 0, 0, 0, 0]) == 0
import random
random.seed(42)
testData = [1, 2, 3, 1, 2, 3, 1, 2, 3]
for i in range(1000):
 random.shuffle(testData)
 assert average(testData) == 2

Shuffling the order of the numbers should not affect the average. The for loop does 1,000 such

random shuffles to thoroughly check that this fact remains true. For an explanation of the

random.seed() function, see the Further Reading section of Exercise #19, ―Password Generator‖.

Try to write a solution based on the information in this description. If you still have trouble

solving this exercise, read the Solution Design and Special Cases and Gotchas sections for

additional hints.

Python Programming Exercises, Gently Explained

45

Prerequisite concepts: len(), for loops, augmented assignment operators

Solution Design

Create a variable that holds the sum total of the numbers in the numbers list. Then write a for

loop to go over all the numbers in the list, adding them to this total. This is identical to the

calculateSum() function in Exercise #13 ―Sum & Product.‖ After the loop, return the total

divided by the amount of numbers in the numbers list. You can use Python’s built-in len()

function for this.

While you shouldn’t use Python’s built-in sum() function, you can import your sumproduct.py

program from Exercise #13, ―Sum & Product‖ for its calculateSum() function. After completing

Exercise #13, make sure sumproduct.py is in the same folder as average.py. Then use import
sumproduct to import the module and sumproduct.calculateSum() to call the function.

Special Cases and Gotchas

If the numbers parameter is an empty list, the function should return None. Therefore, you

should put the code that checks this at the start of the function.

Now try to write a solution based on the information in the previous sections. If you still have

trouble solving this exercise, read the Solution Template section for additional hints.

Solution Template

Try to first write a solution from scratch. But if you have difficulty, you can use the following

partial program as a starting place. Copy the following code from https://invpy.com/average-template.py

and paste it into your code editor. Replace the underscores with code to make a working program:

def average(numbers):
 # Special case: If the numbers list is empty, return None:
 if len(____) == ____:
 return ____

 # Start the total at 0:
 total = ____

 # Loop over each number in numbers:
 for number in ____:
 # Add the number to the total:
 total ____ number

 # Get the average by dividing the total by how many numbers there are:
 return ____ / ____(numbers)

The complete solution for this exercise is given in Appendix A and https://invpy.com/average.py.

You can view each step of this program as it runs under a debugger at https://invpy.com/average-debug/.

46

E X E R C I S E # 1 5 : M E D I A N

median([3, 7, 10, 4, 1, 6, 9, 2, 8]) → 6

If you put a list of numbers into sorted order, the median number is the number at the halfway

point. Outliers can cause the statistical average to be much higher or smaller than the majority of

numbers, so that the median number may give you a better idea of the characteristics of the numbers

in the list. This, the previous, and the next exercise challenge you to make Python solve these statistics

calculations.

Exercise Description

Write a median() function that has a numbers parameter. This function returns the statistical

median of the numbers list. The median of an odd-length list is the number in the middlemost

number when the list is in sorted order. If the list has an even length, the median is the average of the

two middlemost numbers when the list is in sorted order. Feel free to use Python’s built-in sort()

method to sort the numbers list.

Passing an empty list to median() should cause it to return None.

These Python assert statements stop the program if their condition is False. Copy them to

the bottom of your solution program. Your solution is correct if the following assert statements’

conditions are all True:

assert median([]) == None
assert median([1, 2, 3]) == 2
assert median([3, 7, 10, 4, 1, 9, 6, 5, 2, 8]) == 5.5
assert median([3, 7, 10, 4, 1, 9, 6, 2, 8]) == 6
import random
random.seed(42)
testData = [3, 7, 10, 4, 1, 9, 6, 2, 8]
for i in range(1000):
 random.shuffle(testData)
 assert median(testData) == 6

Shuffling the order of the numbers should not affect the median. The for loop does 1,000 such

random shuffles to thoroughly check that this fact remains true. For an explanation of the

random.seed() function, see the Further Reading section of Exercise #19, ―Password

Generator‖.

Try to write a solution based on the information in this description. If you still have trouble

Python Programming Exercises, Gently Explained

47

solving this exercise, read the Solution Design and Special Cases and Gotchas sections for

additional hints.

Prerequisite concepts: len(), for loops, augmented assignment operators, integer division,

modulo operator, indexes

Solution Design

First, check if the numbers list is empty and, if so, return None. Next, you must sort them by

calling the sort() list method. Then calculate the middle index by integer dividing the list length by

2. Integer division does normal division and then rounds the result down to the next lowest integer.

Python’s integer division operator is //. So, for example, while the expression 5 / 2 evaluates to

2.5, the expression 5 // 2 evaluates to 2.

Next, figure out if the list length is odd or even. If odd, the median number is at the middle

index. Let’s think about a few examples to make sure this is correct:

 If the list length is 3, the indexes range from 0 to 2 and the middle index is

3 // 2 or 1. And 1 is the middle of 0 to 2.

 If the list length is 5, the indexes range from 0 to 4 and the middle index is

5 // 2 or 2. And 2 is the middle of 0 to 4.

 If the list length is 9, the indexes range from 0 to 8 and the middle index is

9 // 2 or 4. And 4 is the middle of 0 to 8.

These seem correct. If the list length is even, we need to calculate the average of the two middle

numbers. The indexes for these are the middle index and the middle index minus 1. Let’s think about

a few examples to make sure this is correct:

 If the list length is 4, the indexes range from 0 to 3 and the middle indexes are

4 // 2 and 4 // 2 - 1, or 2 and 1. And 2 and 1 are the middle of 0 to 3.

 If the list length is 6, the indexes range from 0 to 5 and the middle indexes are

6 // 2 and 6 // 2 - 1, or 3 and 2. And 3 and 2 are the middle of 0 to 5.

 If the list length is 10, the indexes range from 0 to 9 and the middle indexes are 10 // 2

and 10 // 2 - 1, or 5 and 4. And 5 and 4 are the middle of 0 to 9.

These seem correct too. Even-length lists have the additional step that the median is the average

of two numbers, so add them together and divide by two.

Special Cases and Gotchas

If the numbers parameter is an empty list, the function should return None. Therefore, you

should put the code that checks this at the start of the function.

Now try to write a solution based on the information in the previous sections. If you still have

trouble solving this exercise, read the Solution Template section for additional hints.

Solution Template

Try to first write a solution from scratch. But if you have difficulty, you can use the following

partial program as a starting place. Copy the following code from https://invpy.com/median-template.py

Python Programming Exercises, Gently Explained

48

and paste it into your code editor. Replace the underscores with code to make a working program:

def median(numbers):
 # Special case: If the numbers list is empty, return None:
 if len(numbers) == ____:
 return ____

 # Sort the numbers list:
 ____.sort()

 # Get the index of the middle number:
 middleIndex = len(____) // ____

 # If the numbers list has an even length, return the average of the
 # middle two numbers:
 if len(numbers) % ____ == 0:
 return (numbers[____] + numbers[middleIndex - ____]) / ____
 # If the numbers list has an odd length, return the middlemost number:
 else:
 return numbers[____]

The complete solution for this exercise is given in Appendix A and https://invpy.com/median.py.

You can view each step of this program as it runs under a debugger at https://invpy.com/median-debug/.

49

E X E R C I S E # 1 6 : M O D E

mode([1, 1, 2, 3, 4]) → 1

Mode is the third statistical calculation exercise in this book. The mode is the number that appears

most frequently in a list of numbers. Together with the median and average, you can get a descriptive

summary of a list of numbers. This exercise tests your ability to use a dictionary to keep a count of the

numbers in a list to find the most frequent number.

Exercise Description

Write a mode() function that has a numbers parameter. This function returns the mode, or

most frequently appearing number, of the list of integer and floating-point numbers passed to the

function.

These Python assert statements stop the program if their condition is False. Copy them to

the bottom of your solution program. Your solution is correct if the following assert statements’

conditions are all True:

assert mode([]) == None
assert mode([1, 2, 3, 4, 4]) == 4
assert mode([1, 1, 2, 3, 4]) == 1
import random
random.seed(42)
testData = [1, 2, 3, 4, 4]
for i in range(1000):
 random.shuffle(testData)
 assert mode(testData) == 4

Shuffling the order of the numbers should not affect the mode. The for loop does 1,000 such

random shuffles to thoroughly check that this fact remains true. For an explanation of the

random.seed() function, see the Further Reading section of Exercise #19, ―Password

Generator‖.

Try to write a solution based on the information in this description. If you still have trouble

solving this exercise, read the Solution Design and Special Cases and Gotchas sections for

additional hints.

Prerequisite concepts: for loops, augmented assignment operators, indexes, not in operator

Python Programming Exercises, Gently Explained

50

Solution Design

The solution uses a dictionary to track how often each number appears in the list. The keys of the

dictionary will be the number, and the values will be a count of how often the number appears in the

list.

Start with an empty dictionary and set up two variables to keep track of the most frequent

number and how many times this number has appeared in the list. Use a for loop to loop over

numbers in the numbers list. If the current number we are looping on doesn’t appear in the

dictionary’s keys, then create a key-value pair for it with the value starting at 0. Then increment the

count for this number in the dictionary. Finally, if this count is larger than the most frequent number’s

count, update the most frequent number variable and most frequent number’s count variable with the

current number and its count.

By the time the for loop has finished, the most frequent number variable contains the mode of

the numbers list. Calculating the mode is similar Exercise #12, ―Smallest & Biggest‖. Both solutions

loop over the list of numbers, using another variable to (in Exercise #12) keep track of the

smallest/biggest number found so far or (in this exercise) keep track of the most frequently occurring

number found so far.

Special Cases and Gotchas

If the numbers parameter is an empty list, the function should return None. You should put the

code that checks this at the start of the function.

Now try to write a solution based on the information in the previous sections. If you still have

trouble solving this exercise, read the Solution Template section for additional hints.

Solution Template

Try to first write a solution from scratch. But if you have difficulty, you can use the following

partial program as a starting place. Copy the following code from https://invpy.com/mode-template.py and

paste it into your code editor. Replace the underscores with code to make a working program:

def mode(numbers):
 # Special case: If the numbers list is empty, return None:
 if len(numbers) == ____:
 return ____

 # Dictionary with keys of numbers and values of how often they appear:
 numberCount = {}

 # Track the most frequent number and how often it appears:
 mostFreqNumber = None
 mostFreqNumberCount = ____

 # Loop through all the numbers, counting how often they appear:
 for number in ____:
 # If the number hasn't appeared before, set it's count to 0.
 if ____ not in numberCount:
 numberCount[____] = ____
 # Increment the number's count:
 numberCount[____] += ____
 # If this is more frequent than the most frequent number, it

Python Programming Exercises, Gently Explained

51

 # becomes the new most frequent number:
 if numberCount[number] > ____:
 mostFreqNumber = ____
 mostFreqNumberCount = ____[____]
 # The function returns the most frequent number:
 return mostFreqNumber

The complete solution for this exercise is given in Appendix A and https://invpy.com/mode.py. You

can view each step of this program as it runs under a debugger at https://invpy.com/mode-debug/.

52

E X E R C I S E # 1 7 : D I C E R O L L

rollDice(1) → 6

This exercise uses Python’s random number generating functions to simulate rolling any number

of six-sided dice and returning the total sum of the dice roll. This exercise covers random number

generation with Python’s random module.

Exercise Description

Write a rollDice() function with a numberOfDice parameter that represents the number of

six-sided dice. The function returns the sum of all of the dice rolls. For this exercise you must import

Python’s random module to call its random.randint() function for this exercise.

These Python assert statements stop the program if their condition is False. Copy them to

the bottom of your solution program. Your solution is correct if the following assert statements’

conditions are all True. We can’t predict rollDice()’s random return value, but we can do

repeated checks that the return value is within the correct range of expected values:

assert rollDice(0) == 0
assert rollDice(1000) != rollDice(1000)
for i in range(1000):
 assert 1 <= rollDice(1) <= 6
 assert 2 <= rollDice(2) <= 12
 assert 3 <= rollDice(3) <= 18
 assert 100 <= rollDice(100) <= 600

There is an astronomically small chance that the assert rollDice(1000) !=
rollDice(1000) will fail with a false positive. This assertion tests that rollDice() doesn’t

simply return the same ―random‖ number each time by simulating rolling 1,000 dice twice and making

sure the totals are different for both rolls. But, of course, there is a chance they’ll come up the same

total and cause an AssertionError. In that case, just rerun the assertion tests. After all, what are

the odds of that happening twice?

Try to write a solution based on the information in this description. If you still have trouble

solving this exercise, read the Solution Design and Special Cases and Gotchas sections for

additional hints.

Prerequisite concepts: import statements, random module, randint(), for loops, range(),

augmented assignment operator

Python Programming Exercises, Gently Explained

53

Solution Design

First, create a variable to track the running total of the dice rolls and start it with the value 0.

Then make a for loop to loop the same number of times as the numberOfDice parameter. Inside

the loop, call the random.randint() function to return a random number between 1 and 6 and

add this number to the running total. After the loop completes, return the total.

If you don’t know how the random.randint() function works, you can run import
random and help(random.randint) in the interactive shell to view its documentation. Or you

can do an internet search for ―python randint‖ to find information about the function online.

Special Cases and Gotchas

There are no special cases for this exercise, but remember that Python’s random.randint()

function is inclusive of its arguments. Calling, for example, range(6) causes a for loop to loop

from 0 up to, but not including, 6. But calling random.randint(1, 6) returns a random number

between 1 and 6, including the 1 and the 6. If you roll three 6-sided dice, the range is from 3 to 18,

not 1 to 18.

Rolling multiple dice doesn’t produce a uniform distribution: rolling two 6-sided dice is much

more likely to come up with 7 because there are more combinations that add up to 7 (1 + 6, 2 + 5, 3

+ 4, 4 + 3, 5 + 2, and 6 + 1) compared with rolling 2 (1 and 1 only). This is why you would need to

call random.randint(1, 6) twice and add the rolls together instead of call

random.randint(2, 12) once.

Your solution program needs import random at the top of the program in order to call the

random.randint() function, or else you’ll get a NameError: name 'random' is not
defined error message.)

Now try to write a solution based on the information in the previous sections. If you still have

trouble solving this exercise, read the Solution Template section for additional hints.

Solution Template

Try to first write a solution from scratch. But if you have difficulty, you can use the following

partial program as a starting place. Copy the following code from https://invpy.com/rolldice-template.py

and paste it into your code editor. Replace the underscores with code to make a working program:

Import the random module for its randint() function.
____ random

def rollDice(numberOfDice):
 # Start the sum total at 0:
 total = ____
 # Run a loop for each die that needs to be rolled:
 for i in range(____):
 # Add the amount from one 6-sided dice roll to the total:
 total += random.randint(____, ____)
 # Return the dice roll total:
 return total

The complete solution for this exercise is given in Appendix A and https://invpy.com/rolldice.py.

You can view each step of this program as it runs under a debugger at https://invpy.com/rolldice-debug/.

54

E X E R C I S E # 1 8 : B U Y 8 G E T 1 F R E E

 getCostOfCoffee(7, 2.50) → 17.50
getCostOfCoffee(8, 2.50) → 20
getCostOfCoffee(9, 2.50) → 20

Let’s say a coffee shop punches holes into a customer’s card each time they buy a coffee. After

the card has eight hole punches, the customer can use the card to get their 9th cup of coffee for free.

In this exercise, you’ll translate this into a simple calculation to see how much a given quantity of

coffees costs while considering this buy-8-get-1-free system.

Exercise Description

Write a function named getCostOfCoffee() that has a parameters named

numberOfCoffees and pricePerCoffee. Given this information, the function returns the total

cost of the coffee order. This is not a simple multiplication of cost and quantity, however, because the

coffee shop has an offer where you get one free coffee for every eight coffees you buy.

For example, buying eight coffees for $2.50 each costs $20 (or 8 × 2.5). But buying nine coffees

also costs $20, since the first eight makes the ninth coffee free. Buying ten coffees calculates as

follows: $20 for the first eight coffees, a free ninth coffee, and $2.50 for the tenth coffee for a total of

$22.50.

These Python assert statements stop the program if their condition is False. Copy them to

the bottom of your solution program. Your solution is correct if the following assert statements’

conditions are all True:

assert getCostOfCoffee(7, 2.50) == 17.50
assert getCostOfCoffee(8, 2.50) == 20
assert getCostOfCoffee(9, 2.50) == 20
assert getCostOfCoffee(10, 2.50) == 22.50

for i in range(1, 4):
 assert getCostOfCoffee(0, i) == 0
 assert getCostOfCoffee(8, i) == 8 * i
 assert getCostOfCoffee(9, i) == 8 * i
 assert getCostOfCoffee(18, i) == 16 * i
 assert getCostOfCoffee(19, i) == 17 * i
 assert getCostOfCoffee(30, i) == 27 * i

Python Programming Exercises, Gently Explained

55

Try to write a solution based on the information in this description. If you still have trouble

solving this exercise, read the Solution Design and Special Cases and Gotchas sections for

additional hints.

Prerequisite concepts: while loops, augmented assignment operator

Solution Design

I have two solutions for this exercise. The simpler one is a counting approach to this exercise.

First, we create variables to track how much the total price is so far (this starts at 0) and how many

cups until we get a free cup of coffee (this starts at 8). We then have a while loop that continues

looping as long as there are still cups of coffee to count. Inside the loop, we decrement the

numberOfCoffees argument and check if this is a free cup of coffee. If it is, we reset the number

of cups to the next free cup back to 8. If it isn't a free coffee, we increase the total price and

decrement the number of cups to the next free cup.

After the loop finishes, the function returns the variable tracking the total price.

Special Cases and Gotchas

There are several places where you can have an off-by-one error. These errors result from simple

oversights that lead to slightly wrong calculations.

First, note that you must buy eight cups of coffee to get the ninth cup for free; you don't get the

eighth cup for free. Also the free cup of coffee doesn't count towards the eight cups you buy to get a

free cup. The price of eight cups and nine cups is the same: you can purposefully forego a free cup of

coffee.

Now try to write a solution based on the information in the previous sections. If you still have

trouble solving this exercise, read the Solution Template section for additional hints.

Solution Template

Try to first write a solution from scratch. But if you have difficulty, you can use the following

partial program as a starting place. Copy the following code from https://invpy.com/buy8get1free-

template.py and paste it into your code editor. Replace the underscores with code to make a working

program:

def getCostOfCoffee(numberOfCoffees, pricePerCoffee):
 # Track the total price:
 totalPrice = ____
 # Track how many coffees we have until we get a free one:
 cupsUntilFreeCoffee = 8

 # Loop until the number of coffees to buy reaches 0:
 while numberOfCoffees ____ 0:
 # Decrement the number of coffees left to buy:
 ____ -= 1

 # If this cup of coffee is free, reset the number to buy until
 # a free cup back to 8:
 if cupsUntilFreeCoffee == ____:
 ____ = 8

Python Programming Exercises, Gently Explained

56

 # Otherwise, pay for a cup of coffee:
 else:
 # Increase the total price:
 totalPrice += ____
 # Decrement the coffees left until we get a free coffee:
 cupsUntilFreeCoffee -= ____

 # Return the total price:
 return ____

The complete solution for this exercise is given in Appendix A and

https://invpy.com/buy8get1free.py. You can view each step of this program as it runs under a debugger at

https://invpy.com/buy8get1free-debug/.

Another Solution Design

The counting solution design, while simple, gets slower the larger the number of purchased

coffees becomes. If you called getCostOfCoffee(1000000000, 2.50) it could take a couple

of minutes before the function returns an answer. There’s a more direct way to calculate the total

price for these large coffee orders.

First, you can calculate the number of free coffees by integer dividing numberOfCoffees by 9.

For every nine coffees, one is a free coffee. Any remainder coffees don’t matter for counting the

number of free coffees, which is why you use the // integer division operator instead of the / regular

division operator. Store this division result in a variable named numberOfFreeCoffees.

To calculate the number of paid coffees, subtract numberOfFreeCoffees from

numberOfCoffees and store this difference in a variable named numberOfPaidCoffees. (This

makes sense; coffees are either paid for or free, so the number of paid and free coffees must add up

to numberOfCoffees). The final value to return is the numberOfPaidCoffees times the

pricePerCoffee.

The benefit of this solution design is that it does three calculations (a division, a subtraction, and

a multiplication) no matter how big or small numberOfCoffees. Calling

getCostOfCoffee(1000000000, 2.50) with this implementation finishes in milliseconds

rather than minutes.

Another Solution Template

Try to first write a solution from scratch. But if you have difficulty, you can use the following

partial program as a starting place. Copy the following code from https://invpy.com/buy8get1free2-

template.py and paste it into your code editor. Replace the underscores with code to make a working

program:

def getCostOfCoffee(numberOfCoffees, pricePerCoffee):
 # Calculate the number of free coffees we get in this order:
 numberOfFreeCoffees = ____ // 9

 # Calculate the number of coffees we will have to pay for in this order:
 numberOfPaidCoffees = numberOfCoffees - ____

 # Calculate and return the price:
 return ____ * ____

Python Programming Exercises, Gently Explained

57

The complete solution for this exercise is given in Appendix A and

https://invpy.com/buy8get1free2.py. You can view each step of this program as it runs under a debugger at

https://invpy.com/buy8get1free2-debug/.

58

E X E R C I S E # 1 9 : P A S S W O R D G E N E R A T O R

generatePassword(12) → 'v*f6uoklQJ!d'
generatePassword(12) → ' Yzkr(j2T$MsG'

generatePassword(16) → ' UVp7ow8T%5LZl1la'

While a password made from a single English word like ―rosebud‖ or ―swordfish‖ is easy to

remember, it isn’t secure. A dictionary attack is when hackers program their computers to repeatedly try

logging in with every word in the dictionary as the password. A dictionary attack won’t work if you

use randomly generated passwords. They may not be easy to remember, but they make hacking your

accounts more difficult.

Exercise Description

Write a generatePassword() function that has a length parameter. The length

parameter is an integer of how many characters the generated password should have. For security

reasons, if length is less than 12, the function forcibly sets it to 12 characters anyway. The password

string returned by the function must have at least one lowercase letter, one uppercase letter, one

number, and one special character. The special characters for this exercise are ~!@#$%^&*()_+.

Your solution should import Python’s random module to help randomly generate these

passwords.

These Python assert statements stop the program if their condition is False. Copy them to

the bottom of your solution program. Your solution is correct if the following assert statements’

conditions are all True:

assert len(generatePassword(8)) == 12

pw = generatePassword(14)
assert len(pw) == 14
hasLowercase = False
hasUppercase = False
hasNumber = False
hasSpecial = False
for character in pw:
 if character in LOWER_LETTERS:
 hasLowercase = True
 if character in UPPER_LETTERS:

Python Programming Exercises, Gently Explained

59

 hasUppercase = True
 if character in NUMBERS:
 hasNumber = True
 if character in SPECIAL:
 hasSpecial = True
assert hasLowercase and hasUppercase and hasNumber and hasSpecial

Try to write a solution based on the information in this description. If you still have trouble

solving this exercise, read the Solution Design and Special Cases and Gotchas sections for

additional hints.

Prerequisite concepts: import statements, random module, strings, string concatenation,

len(), append(), randint(), shuffle(), join()

Solution Design

First, you’ll need to create constant strings for each category of characters required by the

exercise:

 Lowercase letters: abcdefghijklmnopqrstuvwxyz (26 characters)

 Uppercase letters: ABCDEFGHIJKLMNOPQRSTUVWXYZ (26 characters)

 Numbers: 1234567890 (10 characters)

 Special characters: ~!@#$%^&*()_+ (13 characters)

Next, create a string that concatenates all four strings into one 75-character string. These

variables are constants in that they aren’t meant to have their contents changed. By convention,

constant variables are typed with ALL_UPPERCASE names and have underscores to separate words

by convention. Constants are often created in the global scope outside of all functions, rather than as

local variables inside a particular function. Constants are commonly used in all programming

languages, even though the term ―constant variable‖ is a bit of an oxymoron.

The first line of the generatePassword() function should check if the length argument is

less than 12, and if so, set length to 12. Next, create a password variable that starts as an empty

list. Then randomly select a character from the lowercase letter constant using Python’s

random.randint() function to pick a random integer index from the constant’s string. Do this for

the other three constants as well.

To guarantee that the final password has at least one character from each of the four categories,

we’ll begin the password with a character from each category. Then we’ll keep adding characters from

the combined string until the password reaches the required length.

But this isn’t completely random since the first four characters are from predictable categories.

To fix this issue, we’ll call Python’s random.shuffle() function to mix up the order of the

characters. Unfortunately, the random.shuffle() function only works on lists, not strings, so we

build up the password from an empty list rather than an empty string.

In a loop, keep adding a randomly selected character from the concatenated string with all

characters until the password list is the same length as length. Then, pass the password list to

random.shuffle() to mix up the order of the characters. Finally, combine this list of strings into a

single string using ''.join(password) and return it.

Python Programming Exercises, Gently Explained

60

Special Cases and Gotchas

The random.shuffle() function only works with list values and not string values. This is why

we add single-character strings to a list, shuffle it, and combine that list of strings into a single string

with the join() string method. Otherwise, passing a string to random.shuffle() results in a

TypeError: 'str' object does not support item assignment error message.

Now try to write a solution based on the information in the previous sections. If you still have

trouble solving this exercise, read the Solution Template section for additional hints.

Solution Template

Try to first write a solution from scratch. But if you have difficulty, you can use the following

partial program as a starting place. Copy the following code from https://invpy.com/passwordgenerator-

template.py and paste it into your code editor. Replace the underscores with code to make a working

program:

Import the random module for its randint() function.
import ____

Create string constants that for each type of character:
LOWER_LETTERS = 'abcdefghijklmnopqrstuvwxyz'
UPPER_LETTERS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
NUMBERS = '1234567890'
SPECIAL = '~!@#$%^&*()_+'

Create a string that has all of these strings combined:
ALL_CHARS = LOWER_LETTERS + ____ + ____ + ____

def generatePassword(length):
 # 12 is the minimum length for passwords:
 if length ____ 12:
 length = ____

 # Create a password variable that starts as an empty list:
 password = []
 # Add a random character from the lowercase, uppercase, digits, and
 # punctuation character strings:
 password.append(LOWER_LETTERS[random.randint(0, 25)])
 password.____(UPPER_LETTERS[random.randint(0, ____)])
 password.____(NUMBERS[random.randint(0, ____)])
 password.____(SPECIAL[random.randint(0, ____)])

 # Keep adding random characters from the combined string until the
 # password meets the length:
 while len(password) < ____:
 password.append(ALL_CHARS[random.randint(____, 74)])

 # Randomly shuffle the password list:
 random.shuffle(____)

 # Join all the strings in the password list into one string to return:
 return ''.join(____)

The complete solution for this exercise is given in Appendix A and

https://invpy.com/passwordgenerator.py. You can view each step of this program as it runs under a

Python Programming Exercises, Gently Explained

61

debugger at https://invpy.com/passwordgenerator-debug/.

Further Reading

Most random number generator (RNG) algorithms are pseudorandom: they appear random but are

actually predictable. Pseudorandom algorithms have an initial value (often an integer) called a seed,

and the same starting seed value produces the same random numbers. For example, you can reset

Python’s seed by passing a seed integer to random.seed(). Notice how setting the same seed in the

following interactive shell example produces the same sequence of ―random‖ numbers:

>>> import random
>>> random.seed(42) # Use any arbitrary integer for the seed.
>>> for i in range(20):
... print(random.randint(0, 9), end=' ')
...
1 0 4 3 3 2 1 8 1 9 6 0 0 1 3 3 8 9 0 8
>>> random.seed(42) # Reset using the same integer seed.
>>> for i in range(20):
... print(random.randint(0, 9), end=' ')
...
1 0 4 3 3 2 1 8 1 9 6 0 0 1 3 3 8 9 0 8

Python can also generate truly random, not pseudorandom, numbers based on several sources of

systems entropy such as boot time, process IDs, position of the mouse cursor, millisecond timing in

between the last several keystrokes, and others. You can look up the official Python documentation

for the random.SystemRandom() function at https://docs.python.org/3/library/random.html.

These theoretical hacks on pseudorandom numbers might concern you if you’re an international

spy or a journalist targeted by the intelligence agencies of nation-states, but in general, using this

program is fine. Randomly- and pseudorandomly-generated passwords are still better than using a

predictable password like ―Stanley123‖. And many hacks happen because people have keystroke-

reading malware on their computers or reuse the same password for multiple accounts. So if the

password database of a website you use is hacked, those hackers can then try to identify the users’

accounts on other popular websites and try those same passwords.

A password manager app is the most effective single thing a computer user can have to increase

their security. When you need to log into a website, you enter your master password into the

password manager app to unlock its encrypted database. Then you can copy the password from the

manager to the clipboard. For example, your password could be something like

GKfazu8WposcVP!EL8, but logging in with it is just a matter of pressing Ctrl-V to paste it into the

website’s login page.

I recommend the free and open-source KeePass app from https://keepass.info, but many password

manager apps are freely available.

62

E X E R C I S E # 2 0 : L E A P Y E A R

isLeapYear(2004) → True

It takes about 365.25 days for the earth to revolve around the sun. This slight offset would cause

our 365-day calendar to become inaccurate over time. Therefore, leap years have an extra day,

February 29th. A leap year occurs on all years divisible by four (e.g., 2016, 2020, 2024, and so on).

However, the exception to this rule is that years divisible by one hundred (e.g., 2100, 2200, 2300, and

so on) aren’t leap years. And the exception to this exception is that years divisible by four hundred

(e.g., 2000, 2400, and so on) are leap years.

Exercise Description

Write a isLeapYear() function with an integer year parameter. If year is a leap year, the

function returns True. Otherwise, the function returns False.

These Python assert statements stop the program if their condition is False. Copy them to

the bottom of your solution program. Your solution is correct if the following assert statements’

conditions are all True:

assert isLeapYear(1999) == False
assert isLeapYear(2000) == True
assert isLeapYear(2001) == False
assert isLeapYear(2004) == True
assert isLeapYear(2100) == False
assert isLeapYear(2400) == True

Try to write a solution based on the information in this description. If you still have trouble

solving this exercise, read the Solution Design and Special Cases and Gotchas sections for

additional hints.

Prerequisite concepts: modulo operator, elif statements

Solution Design

Determining leap years involves checking if an integer is divisible by 4, 100, and 400. Solving

Exercise #3, ―Odd & Even,‖ Exercise #5, ―Fizz Buzz,‖ and Exercise #6, ―Ordinal Suffix,‖ all

involved the % modulo operator to determine the divisibility of integers. We’ll use year % 4, year
% 100, and year % 400 in our solution.

Python Programming Exercises, Gently Explained

63

It can also help to draw a flow chart of the general logic on a whiteboard or with paper and pen.

It could look something like this:

Figure 20-1: A flow chart showing the logical steps of determining if a year is a leap year.

Leap year rules have a few exceptions, so this function needs a set of if-elif-else statements.

The order of these statements matters. You could use an if statement to check if the year is divisible

by 4 and, if so, return True. But before returning, you need another if statement to check if the year

is divisible by 100 and return False. But before that, you need yet another if statement that returns

True if the year is divisible by 400. Writing code this way ends up looking like this:

def isLeapYear(year):
 if year % 4 == 0:
 if year % 100 == 0:
 if year % 400 == 0:
 # Year is divisible by 400:
 return True
 else:
 # Year is divisible by 100 but not by 400:
 return False
 else:
 # Year is divisible by 4 but not by 100:
 return True
 else:
 # Year is not divisible by 4:
 return False

This code works correctly but is hard to follow. There are several levels of indentation, and the

nested if-else statements make it tricky to see which else statement is paired with which if

statement.

Instead, try switching around the order of the logic. For example, if the year is divisible by 400,

return True. Or else, if the year is divisible by 100, return False. Or else, if the year is divisible by 4,

return True. Or else, for all other years return False. Writing code this way reduces the amount of

nested if-else statements and produces more readable code.

Python Programming Exercises, Gently Explained

64

Special Cases and Gotchas

Outside of the complex list of rules, there are no particular gotchas for this exercise. The tricky

part is to ensure that you have the conditions for the if and elif statements in the correct order.

Now try to write a solution based on the information in the previous sections. If you still have

trouble solving this exercise, read the Solution Template section for additional hints.

Solution Template

Try to first write a solution from scratch. But if you have difficulty, you can use the following

partial program as a starting place. Copy the following code from https://invpy.com/leapyear-template.py

and paste it into your code editor. Replace the underscores with code to make a working program:

def isLeapYear(year):
 # Years divisible by 400 are leap years:
 if ____ % 400 == ____:
 return ____
 # Otherwise, years divisible by 100 are not leap years:
 elif ____ % 100 == ____:
 return ____
 # Otherwise, years divisible by 4 are leap years:
 elif ____ % 4 == ____:
 return ____
 # Otherwise, every other year is not a leap year:
 else:
 return ____

The complete solution for this exercise is given in Appendix A and https://invpy.com/leapyear.py.

You can view each step of this program as it runs under a debugger at https://invpy.com/leapyear-debug/.

65

E X E R C I S E # 2 1 : V A L I D A T E D A T E

isValidDate(2005, 3, 29) → True
isValidDate(2005, 13, 32) → False

You can represent a date with three integers for the year, month, and day, but this doesn’t mean

that any integers represent a valid date. After all, there is no 13th month of the year or 32nd day of any

month. This exercise has you check if a year/month/day combination is valid, given that different

months have different numbers of days. You’ll use the solution you wrote for Exercise #20, ―Leap

Year‖ as part of the solution for this exercise, so finish Exercise #20 before attempting this one.

Exercise Description

Write an isValidDate() function with parameters year, month, and day. The function

should return True if the integers provided for these parameters represent a valid date. Otherwise,

the function returns False. Months are represented by the integers 1 (for January) to 12 (for

December) and days are represented by integers 1 up to 28, 29, 30, or 31 depending on the month

and year. Your solution should import your leapyear.py program from Exercise #20 for its

isLeapYear() function, as February 29th is a valid date on leap years.

September, April, June, and November have 30 days. The rest have 31, except February which

has 28 days. On leap years, February has 29 days.

These Python assert statements stop the program if their condition is False. Copy them to

the bottom of your solution program. Your solution is correct if the following assert statements’

conditions are all True:

assert isValidDate(1999, 12, 31) == True
assert isValidDate(2000, 2, 29) == True
assert isValidDate(2001, 2, 29) == False
assert isValidDate(2029, 13, 1) == False
assert isValidDate(1000000, 1, 1) == True
assert isValidDate(2015, 4, 31) == False
assert isValidDate(1970, 5, 99) == False
assert isValidDate(1981, 0, 3) == False
assert isValidDate(1666, 4, 0) == False

import datetime
d = datetime.date(1970, 1, 1)
oneDay = datetime.timedelta(days=1)

Python Programming Exercises, Gently Explained

66

for i in range(1000000):
 assert isValidDate(d.year, d.month, d.day) == True
 d += oneDay

Try to write a solution based on the information in this description. If you still have trouble

solving this exercise, read the Solution Design and Special Cases and Gotchas sections for

additional hints.

Prerequisite concepts: import statements, Boolean operators, chaining operators, elif

statements

Solution Design

Any integer is a valid value for the year parameter, but we do need to pass year to our

leapyear.isLeapYear() function if month is set to 2 (February). Be sure your program has an

import leapyear instruction and that the leapyear.py file is in the same folder as your solution’s file.

Any month values outside of 1 to 12 would be an invalid date. In Python, you can chain

together operators as a shortcut: the expression 1 <= month <= 12 is the same as the expression

(1 <= month) and (month <= 12). You can use this to determine if your month and day

parameters are within a valid range.

The number of days in a month depends on the month:

 If month is 9, 4, 6, or 11 (September, April, June, and November, respectively) the

maximum value for day is 30.

 If month is 2 (February), the maximum value for day is 28 (or 29 if

leapyear.isLeapYear(year) returns True).

 Otherwise, the maximum value for day is 31.

Like the solution for Exercise #20, ―Leap Year,‖ this solution is a series of if, elif, or else

statements.

Special Cases and Gotchas

To simplify your code as much as possible, think about the cases that can cause the function to

return as soon as possible. For example, if month is outside of the 1 to 12 range, the function returns

False. There’s no other set of circumstances you need to check; the function can immediately return

False. If it doesn’t return, you can assume that month contains a valid value for the rest of the

function.

The other immediate check is if leapyear.isLeapYear(year) returns True and month is

2 and day is 29, the function can immediately return True. If the function hasn’t returned True for

the leap day, you can assume that leap years are irrelevant for the rest of the code in the function.

Now try to write a solution based on the information in the previous sections. If you still have

trouble solving this exercise, read the Solution Template section for additional hints.

Solution Template

Try to first write a solution from scratch. But if you have difficulty, you can use the following

partial program as a starting place. Copy the following code from https://invpy.com/validatedate-

Python Programming Exercises, Gently Explained

67

template.py and paste it into your code editor. Replace the underscores with code to make a working

program:

Import the leapyear module for its isLeapYear() function:
____ leapyear

def isValidDate(year, month, day):
 # If month is outside the bounds of 1 to 12, return False:
 if not (1 ____ month ____ 12):
 return ____
 # After this point, you can assume the month is valid.

 # If the year is a leap year and the date is Feb 29th, it is valid:
 if leapyear.isLeapYear(____) and ____ == 2 and ____ == 29:
 return ____
 # After this point, you can assume the year is not a leap year.

 # Check for invalid dates in 31-day months:
 if month in (1, 3, 5, 7, 8, 10, 12) and not (1 <= ____ <= 31):
 return ____
 # Check for invalid dates in 30-day months:
 elif ____ in (4, 6, 9, 11) and not (1 <= day <= 30):
 return ____
 # Check for invalid dates in February:
 elif month == ____ and not (1 <= ____ <= 28):
 return ____

 # Date passes all checks and is valid, so return True:
 return ____

The complete solution for this exercise is given in Appendix A and https://invpy.com/validatedate.py.

You can view each step of this program as it runs under a debugger at https://invpy.com/validatedate-

debug/.

Further Reading

Python’s datetime module has several features for dealing with dates and calendar data. You

can learn more about it in Chapter 17 of Automate the Boring Stuff with Python at

https://automatetheboringstuff.com/2e/chapter17/.

68

E X E R C I S E # 2 2 : R O C K , P A P E R , S C I S S O R S

rpsWinner('rock', 'paper') → 'player2'

Rock, paper, scissors is a popular hand game for two players. The two players simultaneously

choose one of the three possible moves and determine the winner of the game: rock beats scissors,

paper beats rock, and scissors beats paper. This exercise involves determining a game’s outcome given

the moves of the two players.

Exercise Description

Write a rpsWinner() function with parameters player1 and player2. These parameters are

passed one of the strings 'rock', 'paper', or 'scissors' representing that player’s move. If

this results in player 1 winning, the function returns 'player one'. If this results in player 2

winning, the function returns 'player two'. Otherwise, the function returns 'tie'.

These Python assert statements stop the program if their condition is False. Copy them to

the bottom of your solution program. Your solution is correct if the following assert statements’

conditions are all True:

assert rpsWinner('rock', 'paper') == 'player two'
assert rpsWinner('rock', 'scissors') == 'player one'
assert rpsWinner('paper', 'scissors') == 'player two'
assert rpsWinner('paper', 'rock') == 'player one'
assert rpsWinner('scissors', 'rock') == 'player two'
assert rpsWinner('scissors', 'paper') == 'player one'
assert rpsWinner('rock', 'rock') == 'tie'
assert rpsWinner('paper', 'paper') == 'tie'
assert rpsWinner('scissors', 'scissors') == 'tie'

Try to write a solution based on the information in this description. If you still have trouble

solving this exercise, read the Solution Design and Special Cases and Gotchas sections for

additional hints.

Prerequisite concepts: Boolean operators, elif statements

Solution Design

Similar to the solutions for Exercise #20, ―Leap Year‖ and #21, ―Validate Date‖, the solution for

Python Programming Exercises, Gently Explained

69

this exercise is a set of if-elif-else statements. The player1 parameter contains a string of the

first player’s move and the player2 parameter contains a string of the second player’s move. These

strings will be one of 'rock', 'paper', and 'scissors'. You’ll want to use comparison

operators to check the value of both players and join them with an and operator. For example, the

expression player1 == 'rock' evaluates to True if the first player went with rock, and the

expression player2 == 'paper' evaluates to True if the second player went with paper. This

means that in the expression player1 == 'rock' and player2 == 'paper' evaluates to

True if both sides of the and operator evaluated to True. In this case, the second player is the

winner and the function should return 'player2'.

Special Cases and Gotchas

You can check if the player1 parameter equals the player2 parameter at the start of the

function and immediately return 'tie' in that case.

Now try to write a solution based on the information in the previous sections. If you still have

trouble solving this exercise, read the Solution Template section for additional hints.

Solution Template

Try to first write a solution from scratch. But if you have difficulty, you can use the following

partial program as a starting place. Copy the following code from https://invpy.com/rockpaperscissors-

template.py and paste it into your code editor. Replace the underscores with code to make a working

program:

def rpsWinner(move1, move2):
 # Check all six possible combinations with a winner and return it:
 if move1 == 'rock' and move2 == 'paper':
 return 'player two'
 elif ____ == 'rock' and move2 == 'scissors':
 return ____
 ____ move1 == 'paper' and ____ == 'scissors':
 return ____
 ____ ____ == 'paper' and move2 == 'rock':
 return ____
 ____ move1 == 'scissors' and ____ == 'rock':
 return ____
 ____ ____ == 'scissors' and ____ == 'paper':
 return 'player one'
 # For all other combinations, it is a tie:
 ____:
 return ____

The complete solution for this exercise is given in Appendix A and

https://invpy.com/rockpaperscissors.py. You can view each step of this program as it runs under a

debugger at https://invpy.com/rockpaperscissors-debug/.

70

E X E R C I S E # 2 3 : 9 9 B O T T L E S O F B E E R

99 bottles of beer on the wall,
99 bottles of beer,

Take one down,
Pass it around,

98 bottles of beer on the wall,

―99 Bottles of Beer on the Wall‖ is a cumulative song often sung to pass the time (and annoy

anyone close to the singer). Long, tedious activities are the perfect task for computers. In this exercise,

you’ll write a program to display the complete lyrics of this song.

Exercise Description

Write a program that displays the lyrics to ―99 Bottles of Beer.‖ Each stanza of the song goes like

this:

X bottles of beer on the wall,

X bottles of beer,

Take one down,

Pass it around,

X – 1 bottles of beer on the wall,

The X in the song starts at 99 and decreases by one for each stanza. When X is one (and X – 1 is

zero), the last line is ―No more bottles of beer on the wall!‖ After each stanza, display a blank line to

separate it from the next stanza.

You’ll know you have the program correct if it matches the lyrics at

https://inventwithpython.com/bottlesofbeerlyrics.txt. It looks like the following:

99 bottles of beer on the wall,

99 bottles of beer,

Take one down,

Pass it around,

98 bottles of beer on the wall,

Python Programming Exercises, Gently Explained

71

98 bottles of beer on the wall,

98 bottles of beer,

Take one down,

Pass it around,

97 bottles of beer on the wall,

…cut for brevity…

1 bottle of beer on the wall,

1 bottle of beer,

Take one down,

Pass it around,

No more bottles of beer on the wall!

Try to write a solution based on the information in this description. If you still have trouble

solving this exercise, read the Solution Design and Special Cases and Gotchas sections for

additional hints.

Prerequisite concepts: for loops, range() with three arguments, print()

Solution Design

Use a for loop to loop from 99 down to, but not including, 1. The 3-argument form of

range() can do this with:

for numberOfBottles in range(99, 1, -1)

The numberOfBottles variable starts at the first argument, 99. The second argument, 1, is the

value that numberOfBottles goes down to (but does not include). This means the last iteration sets

numberOfBottles to 2. The third argument, -1, is the step argument and changes

numberOfBottles by -1 instead of the default 1. This causes the for loop to decrease the loop

variable rather than increase it.

For example, if we run:

for i in range(4, 0, -1):

 print(i)

...it would produce the following output:

4
3
2
1

If we run:

for i in range(0, 8, 2):

 print(i)

Python Programming Exercises, Gently Explained

72

...it would produce the following output:

0
2
4
6

The 3-argument form of range() allows you to set more detail than the 1-argument form, but

the 1-argument form is more common because the start and step arguments are often the default 0

and 1, respectively. For example, the code for i in range(10) is the equivalent of for i in
range(0, 10, 1).

Special Cases and Gotchas

Python’s print() function accepts multiple arguments to display. These arguments can be

strings, integers, Booleans, or values of any other data type. The print() function automatically

converts the argument to a string. However, keep in mind that you can only concatenate a string value

to another string value. So while these two lines of code are valid:

 print(numberOfBottles, 'bottles of beer,')

 print(str(numberOfBottles) + ' bottles of beer,')

This line of code produces a TypeError: unsupported operand type(s) for +:
'int' and 'str' error message because numberOfBottles holds an integer and the + operator

cannot concatenate integers to strings.

 print(numberOfBottles + ' bottles of beer,')

The latter line of code is trying to pass a single argument to print(): the expression

numberOfBottles + ' bottles of beer,' evaluates to this single value. This differs from

the first two examples where two arguments, separated by a comma, are passed to print(). The

difference is a subtle but important. While print() automatically converts arguments to strings,

string concatenation doesn’t and requires you to call str() to perform this conversion.

Even the word ―convert‖ is a bit of a misnomer here: function calls return brand new values

rather than change an existing value. Calling len('hello') returns the integer value 5. It’s not that

the string 'hello' has been changed to the integer 5. Similarly, calling str(42) or int('99')

doesn’t change the argument but returns new values.

This is why code such as str(numberOfBottles) doesn’t convert the integer in the

numberOfBottles variable to a string. Instead, if you want to change the variable, you need to

assign the return value to the variable like:

numberOfBottles = str(numberOfBottles)

Don’t think of this as modifying the value in numberOfBottles, but rather replacing it with

the value returned from the str() function call.

Now try to write a solution based on the information in the previous sections. If you still have

trouble solving this exercise, read the Solution Template section for additional hints.

Solution Template

Try to first write a solution from scratch. But if you have difficulty, you can use the following

partial program as a starting place. Copy the following code from https://invpy.com/bottlesofbeer-

Python Programming Exercises, Gently Explained

73

template.py and paste it into your code editor. Replace the underscores with code to make a working

program:

Loop from 99 to 2, displaying the lyrics to each stanza.
for numberOfBottles in range(99, 1, ____):
 print(____, 'bottles of beer on the wall,')
 print(____, 'bottles of beer,')
 ____('Take one down,')
 ____('Pass it around,')

 # If there is only one, print "bottle" instead of "bottles".
 if (numberOfBottles - 1) == ____:
 ____('1 bottle of beer on the wall,')
 ____:
 print(____ - 1, ' bottles of beer on the wall,')

The last stanza has singular "bottle" and a different final line:
____('1 bottle of beer on the wall,')
____('1 bottle of beer,')
____('Take one down,')
____('Pass it around,')
____('No more bottles of beer on the wall!')

The complete solution for this exercise is given in Appendix A and

https://invpy.com/bottlesofbeer.py. You can view each step of this program as it runs under a debugger at

https://invpy.com/bottlesofbeer-debug/.

Further Reading

Project #50 in my book, The Big Book of Small Python Projects, also implements this ―99 bottles of

beer‖ exercise. You can read it for free online at https://inventwithpython.com/bigbookpython/. Project #51

is a version where the lyrics deteriorate over time with erased letters, swapped letters, and other

drunken typos.

74

E X E R C I S E # 2 4 : E V E R Y 1 5 M I N U T E S

Clocks have an unusual counting system compared to the normal decimal number system we’re

familiar with. Instead of beginning at 0 and going to 1, 2, and so on forever, clocks start at 12 and go

on to 1, 2, and so on up to 11. Then it loops back to 12 again. (Clocks are quite odd if you think

about it: 12 am comes before 11 am and 12 pm comes before 11 pm.) This is a bit more complicated

than simply writing a program that counts upward. This exercise requires using nested for loops to

loop over the minutes, the hours, and the am and pm halve of the day.

Exercise Description

Write a program that displays the time for every 15 minute interval from 12:00 am to 11:45 pm.

Your solution should produce the following output:

12:00 am
12:15 am
12:30 am
12:45 am
1:00 am
1:15 am
--cut--
11:30 pm
11:45 pm

There are 96 lines in the full output.

Try to write a solution based on the information in this description. If you still have trouble

solving this exercise, read the Solution Design and Special Cases and Gotchas sections for

additional hints.

Prerequisite concepts: for loops, lists, nested loops, string concatenation

Solution Design

This solution requires the use of three nested for loops. The outermost for loop iterates over

'am' and 'pm'. The second for loop iterates over twelve hours, starting with '12', then '1', then

'2', and so on until '11'. The third for loop iterates over the minutes in 15-minute increments:

'00', '15', '30', and '45'. Note that the hours and minutes values are strings, not integers,

because we need to concatenate them into our final string, like: '12' + ':' + '00' + ' ' +
'am' evaluates to '12:00 am'

You’re used to for loops iterating over a range of integers from the range() function. But

Python Programming Exercises, Gently Explained

75

Python’s for loops can iterate over lists of any values. For example, enter the following into the

interactive shell:

>>> for i in ['Alice', 'Bob', 'Carol']:
... print('Hello ' + i)
...
Hello Alice
Hello Bob
Hello Carol

What a for loop does is iterate over a sequence of values. The following interactive shell

example is the equivalent for i in range(4):

>>> for i in [0, 1, 2, 3]:
... print(i)
...
0
1
2
3

In this case, we explicitly typed out the integers to iterate in a list rather than use the more

convenient range(4). But they produce identical results. And explicitly typing out the integers in a

list becomes prohibitively long for large ranges such as range(1000).

Special Cases and Gotchas

The order of the nested for loops is important. You want the innermost for loop to iterate

over minutes, the next innermost to iterate over hours, and the outermost for loop to iterate over

'am' and 'pm'.

Now try to write a solution based on the information in the previous sections. If you still have

trouble solving this exercise, read the Solution Template section for additional hints.

Solution Template

Try to first write a solution from scratch. But if you have difficulty, you can use the following

partial program as a starting place. Copy the following code from https://invpy.com/every15minutes-

template.py and paste it into your code editor. Replace the underscores with code to make a working

program:

Loop over am and pm:
for meridiem in [____, 'pm']:
 # Loop over every hour:
 for hour in [____, '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11']:
 # Loop over every 15 minutes:
 for minutes in ['00', ____, ____, '45']:
 # Print the time:
 print(____ + ':' + ____ + ' ' + ____)

The complete solution for this exercise is given in Appendix A and

https://invpy.com/every15minutes.py. You can view each step of this program as it runs under a debugger

at https://invpy.com/every15minutes-debug/.

76

E X E R C I S E # 2 5 : M U L T I P L I C A T I O N T A B L E

Learning the multiplication table is an early part of our childhood math education. The

multiplication table shows every product of two single digit numbers. In this exercise, we print a

multiplication table on the screen using nested for loops and some string manipulation to align the

columns correctly.

Exercise Description

Write a program that displays a multiplication table that looks like this:

 | 1 2 3 4 5 6 7 8 9 10
--+------------------------------
 1| 1 2 3 4 5 6 7 8 9 10
 2| 2 4 6 8 10 12 14 16 18 20
 3| 3 6 9 12 15 18 21 24 27 30
 4| 4 8 12 16 20 24 28 32 36 40
 5| 5 10 15 20 25 30 35 40 45 50
 6| 6 12 18 24 30 36 42 48 54 60
 7| 7 14 21 28 35 42 49 56 63 70
 8| 8 16 24 32 40 48 56 64 72 80
 9| 9 18 27 36 45 54 63 72 81 90
10|10 20 30 40 50 60 70 80 90 100

The number labels along the top and left sides are the numbers to multiply, and where their

column and row intersect is the product of those numbers. Notice that the single-digit numbers are

padded with spaces to keep them aligned in the same column. You may use Python’s rjust() string

method to provide this padding. This method returns a string with space characters added on the left

side to right-justify the text, and the Solution Design section explains how it works.

The line along the top side of the table is made up of minus sign characters. The line along the

left side is made up of vertical pipe characters (above the Enter key on the keyboard). A plus sign

marks their intersection. Your solution is correct if the output matches the above text of the

multiplication table. You can use a simple print() call for the number labels and lines at the top of

the table. However, don’t hard code the text of the multiplication table into your program: your

program should be more than just a bunch of print() calls.

Try to write a solution based on the information in this description. If you still have trouble

solving this exercise, read the Solution Design and Special Cases and Gotchas sections for

additional hints.

Prerequisite concepts: print(), for loops, range() with two arguments, end keyword

argument for print(), rjust(), str()

Python Programming Exercises, Gently Explained

77

Solution Design

In the first part of the program, print out the horizontal number labels and separating line. You

can program these two lines directly with two print() calls:

print(' | 1 2 3 4 5 6 7 8 9 10')
print('--+------------------------------')

Remember that you need the appropriate amount of spaces in between the numbers so the

columns of the multiplication table to line up. You can treat all numbers as though they were two

digits. The single-digit numbers should have a space printed on their left side, making the string right-

justified. Python’s rjust() string method can do this for you. Enter the following into the

interactive shell:

>>> '42'.rjust(4) # Adds two spaces.
' 42'
>>> '042'.rjust(4) # Adds one space.
' 042'
>>> '0042'.rjust(4) # Adds zero spaces.
'0042'

Notice how all of the strings returned from the rjust(4) call are four characters long. If the

original string is less than four characters long, the rjust() method puts spaces on the left side of

the returned string until it is four characters long.

To print out the multiplication table, two nested for loops can iterate over each product. The

outermost for loop iterates over the numbers of each row, and the innermost for loop iterates over

the numbers of each column in the current row. You don’t want a newline to appear after each

product, but only after each row of products. Python’s print() function automatically adds a

newline to the end of the string you pass. To disable this, pass a blank string for the end keyword

argument like print('Some text', end='').

A simplified version of this code would look like this:

>>> for row in range(1, 11):
... for column in range(1, 11):
... print(str(row * column) + ' ', end='')
... print() # Print a newline.
...
1 2 3 4 5 6 7 8 9 10
2 4 6 8 10 12 14 16 18 20
3 6 9 12 15 18 21 24 27 30
4 8 12 16 20 24 28 32 36 40
5 10 15 20 25 30 35 40 45 50
6 12 18 24 30 36 42 48 54 60
7 14 21 28 35 42 49 56 63 70
8 16 24 32 40 48 56 64 72 80
9 18 27 36 45 54 63 72 81 90
10 20 30 40 50 60 70 80 90 100

Your solution needs these products appropriately aligned as well as the number labels along the

top and left side.

Special Cases and Gotchas

The easiest mistake is getting the amount of padding wrong, causing the columns to no longer be

aligned. For example, if you fail to pad the single-digit products with an extra space character, the

Python Programming Exercises, Gently Explained

78

multiplication table ends up looking like the misaligned table in the previous section.

Now try to write a solution based on the information in the previous sections. If you still have

trouble solving this exercise, read the Solution Template section for additional hints.

Solution Template

Try to first write a solution from scratch. But if you have difficulty, you can use the following

partial program as a starting place. Copy the following code from https://invpy.com/multiplicationtable-

template.py and paste it into your code editor. Replace the underscores with code to make a working

program:

Print the heading of each column:
print(' | 1 2 3 4 5 6 7 8 9 10')
print('--+------------------------------')

Loop over all numbers from 1 to 10:
for column in range(____, ____):
 # Print the number label on the right side:
 print(str(____).rjust(____) + '|', end=____)

 # Loop over all numbers from 1 to 10:
 for row in range(____, ____):
 # Print the product, padded to two digits, followed by a space:
 print(str(____).rjust(____) + ' ', end=____)
 # After the loop, print a newline to end the row:
 ____()

The complete solution for this exercise is given in Appendix A and

https://invpy.com/multiplicationtable.py. You can view each step of this program as it runs under a

debugger at https://invpy.com/multiplicationtable-debug/.

Further Reading

A similar multiplication table project is also used in the free book, The Big Book of Small Python

Projects, as Project #49 at https://inventwithpython.com/bigbookpython. If you are interested in chemistry,

that book also has a project that displays the periodic table of elements.

79

E X E R C I S E # 2 6 : H A N D S H A K E S

There is only one handshake that can happen between two people. Between three people, there

are three possible handshaking pairs. Between four people, there are six handshakes; five people, ten

handshakes, and so on. This exercise explores the full range of possible handshaking combinations

with nested for loops.

Exercise Description

Write a function named printHandshakes() with a list parameter named people which will

be a list of strings of people’s names. The function prints out 'X shakes hands with Y', where

X and Y are every possible pair of handshakes between the people in the list. No duplicates are

permitted: if ―Alice shakes hands with Bob‖ appears in the output, then ―Bob shakes hands with

Alice‖ should not appear.

For example, printHandshakes(['Alice', 'Bob', 'Carol', 'David']) should

print:

Alice shakes hands with Bob
Alice shakes hands with Carol
Alice shakes hands with David
Bob shakes hands with Carol
Bob shakes hands with David
Carol shakes hands with David

The printHandshakes() function must also return an integer of the number of handshakes.

These Python assert statements stop the program if their condition is False. Copy them to

the bottom of your solution program. Your solution is correct if the output displays all possible

handshakes and the following assert statements’ conditions are all True:

assert printHandshakes(['Alice', 'Bob']) == 1
assert printHandshakes(['Alice', 'Bob', 'Carol']) == 3
assert printHandshakes(['Alice', 'Bob', 'Carol', 'David']) == 6

Try to write a solution based on the information in this description. If you still have trouble

solving this exercise, read the Solution Design and Special Cases and Gotchas sections for

additional hints.

Prerequisite concepts: for loops, range() with two arguments, len(), augmented assignment

operators

Python Programming Exercises, Gently Explained

80

Solution Design

We need a pair of nested for loops to obtain the pairs of people in each handshake. The outer

for loop iterates over each index in the person list for the first handshaker, and the inner for loop

iterates over each index in the person list after the outer loop’s index.

The pattern behind the movements of i and j are easier to see when visually laid out, as in

Figure 26-1, which uses a 5-item people list as an example. The indexes i and j refer to the two

people in the handshake:

Figure 26-1: The pattern of i and j’s movement.

As the algorithm runs, j starts after i and moves to the right, and when it reaches the end, i

moves right once and j starts after i again. In the above example with 5 people (indexes 0 to 4) i

starts at 0 and j starts at i + 1, or 1. The j variable increments until it reaches 4, at which point i

increments to 1 and j resets back to i + 1, which is now 2.

If you look at the overall range of i and j, you’ll see that i starts at index 0 and ends at the

second to last index. Meanwhile, j starts at the index after i and ends at the last index. This means

our nested for loops over the people list parameter would look like this:

for i in range(0, len(people) - 1):
 for j in range(i, len(people)):

This solution is identical to the nested for loops in Exercise #42, ―Bubble Sort.‖

Special Cases and Gotchas

The most common mistake you want to avoid is having repeated handshakes. This can happen if

your nested for loops cover the full range of indexes in the people list like so:

for i in range(0, len(people)):
 for j in range(0, len(people)):

In this case, i and j would run with each pair twice: for example, the first time with people[i]

as the first handshaker and people[j] as the second handshaker, and then with people[i] as the

second handshaker and people[j] as the first handshaker.

Python Programming Exercises, Gently Explained

81

Now try to write a solution based on the information in the previous sections. If you still have

trouble solving this exercise, read the Solution Template section for additional hints.

Solution Template

Try to first write a solution from scratch. But if you have difficulty, you can use the following

partial program as a starting place. Copy the following code from https://invpy.com/handshake-template.py

and paste it into your code editor. Replace the underscores with code to make a working program:

def printHandshakes(people):
 # The total number of handshakes starts at 0:
 numberOfHandshakes = ____
 # Loop over every index in the people list except the last:
 for i in range(0, len(____) - 1):
 # Loop over every index in the people list after index i:
 for j in range(i + ____, len(____)):
 # Print a handshake between the people at index i and j:
 print(people[____], 'shakes hands with', people[____])
 # Increment the total number of handshakes:
 numberOfHandshakes += ____
 # Return the total number of handshakes:
 return numberOfHandshakes

The complete solution for this exercise is given in Appendix A and https://invpy.com/handshake.py.

You can view each step of this program as it runs under a debugger at https://invpy.com/handshake-

debug/.

82

E X E R C I S E # 2 7 : R E C T A N G L E D R A W I N G

drawRectangle(16, 4) → ################
 ################
 ################
 ################

In this exercise, you’ll create some ASCII art, primitive graphics created from text characters.

There will be a few such exercises in this book. In this first one, your code draws a solid rectangle out

of # hashtag characters.

Exercise Description

Write a drawRectangle() function with two integer parameters: width and height. The

function doesn’t return any values but rather prints a rectangle with the given number of hashtags in

the horizontal and vertical directions.

There are no Python assert statements to check the correctness of your program. Instead, you

can visually inspect the output yourself. For example, calling drawRectangle(10, 4) should

produce the following output:

##########
##########
##########
##########

If either the width or height parameter is 0 or a negative number, the function should print

nothing.

Try to write a solution based on the information in this description. If you still have trouble

solving this exercise, read the Solution Design and Special Cases and Gotchas sections for

additional hints.

Prerequisite concepts: for loops, range(), print(), end keyword argument for print()

Solution Design

The solution requires a pair of nested for loops. The inner for loop prints a row of hashtag

Python Programming Exercises, Gently Explained

83

characters the width of the width parameter, while the outer for loop prints a number of rows the

same as the height parameter. Inside the inner loop, prevent print() from automatically printing

a newline by passing the end='' keyword argument, like print('#', end='').

Alternatively, you can use string replication to create a row of hashtag characters. In Python, you

can use the * operator with a string and an integer to evaluate to a longer string. For example, enter

the following into the interactive shell:

>>> 'Hello' * 3
'HelloHelloHello'
>>> '#' * 16
'################'
>>> width = 10
>>> width * '#'
'##########'

Using string replication, you can avoid needing a second for loop in your solution.

Special Cases and Gotchas

The solution to this exercise is fairly straightforward. But you should note that in terminal

windows, the text characters are twice as tall as they are wide. If you want to display a square shape,

the width you pass to the drawRectangle() function should be twice the height.

Now try to write a solution based on the information in the previous sections. If you still have

trouble solving this exercise, read the Solution Template section for additional hints.

Solution Template

Try to first write a solution from scratch. But if you have difficulty, you can use the following

partial program as a starting place. Copy the following code from https://invpy.com/rectangledrawing-

template.py and paste it into your code editor. Replace the underscores with code to make a working

program:

def drawRectangle(width, height):
 # Special case: If width or height is less than 1, draw nothing:
 if width ____ 1 or height ____ 1:
 return

 # Loop over each row:
 for row in range(____):
 # Loop over each column in this row:
 for column in range(width):
 # Print a hashtag:
 print('#', ____='')
 # At the end of the row, print a newline:
 print()

The complete solution for this exercise is given in Appendix A and

https://invpy.com/rectangledrawing.py. You can view each step of this program as it runs under a debugger

at https://invpy.com/rectangledrawing-debug/.

Python Programming Exercises, Gently Explained

84

Further Reading

For examples of ASCII art, check out https://en.wikipedia.org/wiki/ASCII_art and

https://www.asciiart.eu/. I’ve also compiled a large number of ASCII art examples in the .txt text files in

this Git repo: https://github.com/asweigart/asciiartjsondb

85

E X E R C I S E # 2 8 : B O R D E R D R A W I N G

drawBorder(16, 4) → +--------------+
 | |
 | |
 +--------------+

Similar to the solid, filled-in ASCII art rectangles our code generated in Exercise #27, ―Rectangle

Drawing,‖ this exercise draws only the border of a rectangle. The + plus character is used for the

corners, the - dash character for horizontal lines, and the | pipe character for vertical lines. (This is

the similar style as the lines in Exercise #25’s multiplication table.

Exercise Description

Write a drawBorder() function with parameters width and height. The function draws the

border of a rectangle with the given integer sizes. There are no Python assert statements to check

the correctness of your program. Instead, you can visually inspect the output yourself. For example,

calling drawBorder(16, 4) would output the following:

+--------------+
| |
| |
+--------------+

The interior of the rectangle requires printing spaces. The sizes given include the space required

for the corners. If the width or height parameter is less than 2, the function should print nothing.

Try to write a solution based on the information in this description. If you still have trouble

solving this exercise, read the Solution Design and Special Cases and Gotchas sections for

additional hints.

Prerequisite concepts: Boolean operators, strings, string concatenation, string replication, for

loops, range()

Python Programming Exercises, Gently Explained

86

Solution Design

There are three separate parts required for the drawBorder() function: drawing the top border

line, drawing the middle, and drawing the bottom border line. The code for drawing the top and

bottom border line will be identical. So really, there’s only two parts you need to code in this function.

Drawing the top horizontal line involves creating a string with a + plus character on the left,

followed by a number of - minus characters, and then another + plus character on the right. The

number of - minus characters needed is width - 2, because the two + plus characters for the

corners count as two units of width.

Similarly, drawing the middle rows requires a | pipe character, followed by a number of space

characters, and then another | pipe character. The number of spaces is also width - 2. You’ll also

need to put this code in a for loop, and draw a number of these rows equal to height - 2.

Finally, drawing the bottom horizontal line is identical to drawing the top. You can copy and

paste the code.

String replication can easily create the - minus and space character strings. In Python, you can

use the * operator with a string and an integer to evaluate to a longer string. For example, enter the

following into the interactive shell:

>>> 'Hello' * 3
'HelloHelloHello'
>>> '-' * 16
'----------------'
>>> width = 10
>>> (width - 2) * '-'
'--------'

Special Cases and Gotchas

Note that the minimum width and height for a border is 2. Calling drawBorder(2, 2) should

print the following on the screen:

++
++

If either the width or height argument is less than 2, the function prints nothing.

Now try to write a solution based on the information in the previous sections. If you still have

trouble solving this exercise, read the Solution Template section for additional hints.

Solution Template

Try to first write a solution from scratch. But if you have difficulty, you can use the following

partial program as a starting place. Copy the following code from https://invpy.com/borderdrawing-

template.py and paste it into your code editor. Replace the underscores with code to make a working

program:

def drawBorder(width, height):
 # Special case: If the width or height is less than two, draw nothing:
 if width < ____ or height < ____:
 return

 # Print the top row:

Python Programming Exercises, Gently Explained

87

 print('+' + ('-' * (width - ____)) + ____)

 # Loop for each row (except the top and bottom):
 for i in range(height - 2):
 # Print the sides:
 print(____ + (____ * (width - 2)) + ____)

 # Print the bottom row:
 print(___________________________________)

The complete solution for this exercise is given in Appendix A and

https://invpy.com/borderdrawing.py. You can view each step of this program as it runs under a debugger

at https://invpy.com/borderdrawing-debug/.

88

E X E R C I S E # 2 9 : P Y R A M I D D R A W I N G

drawPyramid(5) → #
 ###

 #####
 #######
 #########

This exercise continues the generative ASCII art programs of Exercise #27, ―Rectangle

Drawing,‖ and Exercise #28, ―Border Drawing.‖ In this exercise, your code prints a pyramid of

hashtag characters in any given size.

Exercise Description

Write a drawPyramid() function with a height parameter. The top of the pyramid has one

centered hashtag character, and the subsequent rows have two more hashtags than the previous row.

The number of rows matches the height integer. There are no Python assert statements to check

the correctness of your program. Instead, you can visually inspect the output yourself. For example,

calling drawPyramid(8) would output the following:

 #
 ###
 #####
 #######
 #########
 ###########
 #############
###############

Try to write a solution based on the information in this description. If you still have trouble

solving this exercise, read the Solution Design and Special Cases and Gotchas sections for

additional hints.

Prerequisite concepts: strings, string concatenation, string replication, for loops, range()

Python Programming Exercises, Gently Explained

89

Solution Design

It’s important to notice the general pattern as the height of the pyramid increases. Here’s a

pyramid of height 1:

Here’s a pyramid of height 2:

 #

Here’s a pyramid of height 3:

 #
 ###

In order to center the pyramid correctly, you need to print the correct amount of space

characters on the left side of the row. Here’s the pyramid with height set to 5 and the spaces

marked with periods to make them visible:

....#

...###

..#####

.#######
#########

The number of hashtag characters begins at 1 for the top row and then increases by 2. The code

in the for loop requires a number of hashtags equal to rowNumber * 2 + 1. The following table

shows the number of spaces and hashtags for a pyramid of height 5:

Row Number Number of Spaces Number of Hashtags

0 4 1

1 3 3

2 2 5

3 1 7

4 0 9

Notice that for all pyramids, the number of spaces for the top row is height - 1, and each

subsequent row has one less space than the previous row. An easier way to create each row is with a

for loop that ranges from 0 up to, but not including, height for the row number, where row 0 is at

the top. Then the number of spaces at a row number is height – (rowNumber + 1).

String replication can easily create the # hashtag and space character strings. In Python, you can

use the * operator with a string and an integer to evaluate to a longer string. For example, enter the

following into the interactive shell:

>>> 'Hello' * 3
'HelloHelloHello'
>>> '#' * 7
'#######'

Python Programming Exercises, Gently Explained

90

>>> rowNumber = 5
>>> (rowNumber * 2 + 1) * '#'
'###########'

Special Cases and Gotchas

If our solution uses a for loop to loop over the range from 0 up to, but not including, height,

we don’t need a separate check for a height of 0 or a negative height. This is because these values

cause the for loop to not run its code, resulting in no output.

Now try to write a solution based on the information in the previous sections. If you still have

trouble solving this exercise, read the Solution Template section for additional hints.

Solution Template

Try to first write a solution from scratch. But if you have difficulty, you can use the following

partial program as a starting place. Copy the following code from https://invpy.com/pyramiddrawing-

template.py and paste it into your code editor. Replace the underscores with code to make a working

program:

def drawPyramid(height):
 # Loop over each row from 0 up to height:
 for rowNumber in range(____):
 # Create a string of spaces for the left side of the pyramid:
 leftSideSpaces = ' ' * (____ - (rowNumber + ____))
 # Create the string of hashtags for this row of the pyramid:
 pyramidRow = '#' * (____ * 2 + ____)
 # Print the left side spaces and the row of the pyramid:
 ____(leftSideSpaces + pyramidRow)

The complete solution for this exercise is given in Appendix A and

https://invpy.com/pyramiddrawing.py. You can view each step of this program as it runs under a debugger

at https://invpy.com/pyramiddrawing-debug/.

91

E X E R C I S E # 3 0 : 3 D B O X D R A W I N G

drawBox(2) → +----+
 / /|
 / / |
 +----+ +
 | | /
 | |/
 +----+

In this exercise, we’ll move from 2D ASCII art into 3D ASCII art by programmatically

generating boxes at any given size.

Exercise Description

Write a drawBox() function with a size parameter. The size parameter contains an integer

for the width, length, and height of the box. The horizontal lines are drawn with - dash characters,

the vertical lines with | pipe characters, and the diagonal lines with / forward slash characters. The

corners of the box are drawn with + plus signs.

There are no Python assert statements to check the correctness of your program. Instead, you

can visually inspect the output yourself. For example, calling drawBox(1) through drawBox(5)

would output the following boxes, respectively:

 +----------+
 / /|
 +--------+ / / |
 / /| / / |
 +------+ / / | / / |
 / /| / / | / / |
 +----+ / / | / / | +----------+ +
 / /| / / | +--------+ + | | /
 +--+ / / | +------+ + | | / | | /
 / /| +----+ + | | / | | / | | /
+--+ + | | / | | / | | / | | /
| |/ | |/ | |/ | |/ | |/
+--+ +----+ +------+ +--------+ +----------+

Size 1 Size 2 Size 3 Size 4 Size 5

Python Programming Exercises, Gently Explained

92

If the argument for size is less than 1, the function prints nothing.

Try to write a solution based on the information in this description. If you still have trouble

solving this exercise, read the Solution Design and Special Cases and Gotchas sections for

additional hints.

Prerequisite concepts: strings, string concatenation, string replication, for loops, range()

Solution Design

This exercise is a significant leap in complexity compared to the previous rectangle, border, and

pyramid drawing exercises. Nine different lines must be drawn, as well as several whitespace areas on

the left side and interior of the box. However, solving this exercise is still a matter of figuring out the

sizing patterns. Drawing the boxes manually in a text editor first can help you determine the pattern

behind the boxes’ lines. Here are the boxes from size 1 to 5 with the lines numbered and the

whitespace marked with periods (since spaces’ invisibility makes them hard to count):

 +----1-----+
 /........../|
 +---1----+ /........../.|
 /......../| ...2..........3..4
 +--1---+ ...2........3.4 ../........../...|
 .../....../| ../......../..| ./........../....|
 ...+-1--+ ..2......3.4 ./......../...| +----5-----+.....+
 ../..../| ./....../..| +---5----+....+ |..........|..../
..+1-+ .2....3.4 +--5---+...+ |........|.../ |..........|.../
.2..34 +-5--+..+ |......|../ 6........7..8 6..........7..8
+5-+.+ 6....7.8 6......7.8 |........|./ |..........|./
6..78 |....|/ |......|/ |........|/ |..........|/
+9-+ +-9--+ +--9---+ +---9----+ +----9-----+

Size 1 Size 2 Size 3 Size 4 Size 5

Because print() calls display text left-to-right and top-to-bottom, we’ll have to consider the

lines and whitespace in that order. For the following descriptions, note that size is the integer

parameter passed to the drawBox() function.

The box’s diagonal lines follow the pattern of having size slash characters. The box’s vertical

lines follow the pattern of having size pipe characters. Meanwhile, the horizontal lines made of

size * 2 dash characters. Look at the largest box on the right of the above diagram: The horizontal

lines 1, 5, and 9 are made of 10 - dash characters (that is, size * 2). The diagonal lines 2, 3, and 8

are made of 5 / slash characters (that is, size). The vertical lines 4, 6, and 7 are also made of 5 | pipe

characters (that is, size).

The horizontal lines 1, 5, and 9 are identical: They’re made of a + plus character, followed by

size * 2 dash characters and another + plus character. Line 1 has a number of spaces to the left of

the line that equals size + 1.

The interior spaces for the top and front surfaces of the box are size space characters, the same

as the number of - dash characters. The interior space of the right surface of the box is trickier. For

example, here’s a box with size as 5 with the right-side surface spaces marked with periods:

 +----------+
 / /| 0 periods
 / /.| 1 period
 / /..| 2 periods

Python Programming Exercises, Gently Explained

93

 / /...| 3 periods
 / /....| 4 periods
+----------+.....+ 5 periods
| |..../ 4 periods
| |.../ 3 periods
| |../ 2 periods
| |./ 1 period
| |/ 0 periods
+----------+

 Size 5

As you print the top surface, the right-side surface has an increasing number of spaces ranging

from 0 to size - 1 before printing the | pipe character of line 4. When you print line 5, the right-

side surface has exactly size spaces before printing the + plus sign for the corner. And as you print

the front surface, the right-side surface has a decreasing number of spaces ranging from size - 1

to 0 before printing the / slash character of line 8.

Finally, you’ll print the + plus and - dash characters of line 9 at the bottom.

Special Cases and Gotchas

There’s nothing unexpected about printing these boxes. While there are many things to keep

track of, always remember that the number of space and dash characters you print in each row is

always relative to the size parameter. There will be size pipe and slash characters in each vertical

line, and size * 2 dash characters in each horizontal line.

Now try to write a solution based on the information in the previous sections. If you still have

trouble solving this exercise, read the Solution Template section for additional hints.

Solution Template

Try to first write a solution from scratch. But if you have difficulty, you can use the following

partial program as a starting place. Copy the following code from https://invpy.com/boxdrawing-

template.py and paste it into your code editor. Replace the underscores with code to make a working

program:

def drawBox(size):
 # Special case: Draw nothing if size is less than 1:
 if size < ____:
 return

 # Draw back line on top surface:
 print(' ' * (____ + 1) + '+' + '-' * (____ * 2) + '+')

 # Draw top surface:
 for i in range(____):
 print(' ' * (____ - i) + '/' + ' ' * (____ * 2) + '/' + ' ' * i + '|')

 # Draw top line on top surface:
 print(____ + ____ * (size * 2) + ____ + ' ' * size + '+')

 # Draw front surface:
 for i in range(size - 1, ____, ____):
 print(____ + ' ' * (size * ____) + ____ + ' ' * i + ____)

Python Programming Exercises, Gently Explained

94

 # Draw bottom lie on front surface:
 print(____ + ____ * (size * 2) + ____)

In a loop, call drawBox() with arguments 1 to 5:
for i in range(1, 6):
 drawBox(i)

The complete solution for this exercise is given in Appendix A and https://invpy.com/boxdrawing.py.

You can view each step of this program as it runs under a debugger at https://invpy.com/boxdrawing-

debug/.

Further Reading

If you enjoy the challenge of these generative ASCII art exercises, check out

https://github.com/asweigart/programmedpatterns/. This website has several growing patterns that you can

try to replicate as Python programs. For example, one such pattern looks like this:

 ### ### ###
 #### ####
 #####

The first four steps of the pattern are provided. You could then write a function with a step

parameter that prints the pattern at that given step. There are hundreds of patterns featured on the

site.

95

E X E R C I S E # 3 1 : C O N V E R T I N T E G E R S T O

S T R I N G S

convertIntToStr(42) → '42'

In Python, the values 42 and '42' are two different values: you can perform mathematics on

the integer 42, but the string '42' is the same as any other two-character text string. You can

perform mathematical addition on integer values, but not on strings. And you can concatenate or

replicate string values, but not integers. A common programming task is to obtain the string

equivalent of a number. You can use the str() function to do this conversion but in this exercise

you’ll recreate this function yourself.

Exercise Description

Write a convertIntToStr() function with an integerNum parameter. This function

operates similarly to the str() function in that it returns a string form of the parameter. For

example, convertIntToStr(42) should return the string '42'. The function doesn’t have to

work for floating-point numbers with a decimal point, but it should work for negative integer values.

Avoid using Python’s str() function in your code, as that would do the conversion for you and

defeat the purpose of this exercise. However, we use str() with assert statements to check that

your convertIntToStr() function works the same as str() for all integers from -10000 to

9999:

for i in range(-10000, 10000):
 assert convertIntToStr(i) == str(i)

Try to write a solution based on the information in this description. If you still have trouble

solving this exercise, read the Solution Design and Special Cases and Gotchas sections for

additional hints.

Prerequisite concepts: dictionaries, while loops, string concatenation, integer division

Solution Design

To create the string equivalent of the integer value, we’ll convert the integers to strings one digit

at a time. Let’s create a variable named stringNum to hold the converted string. In a loop, the

expression integerNum % 10 evaluates to the digit in the one’s place of integerNum. Store this

Python Programming Exercises, Gently Explained

96

result in a variable named onesPlaceDigit.

Then we add the string equivalent of onesPlaceDigit to stringNum with a series of if-

elif statements such as the following:

if onesPlaceDigit == 0:
 stringNum = '0' + stringNum
elif onesPlaceDigit == 1:
 stringNum = '1' + stringNum
elif onesPlaceDigit == 2:
 stringNum = '2' + stringNum
elif onesPlaceDigit == 3:
 stringNum = '3' + stringNum
elif onesPlaceDigit == 4:
 stringNum = '4' + stringNum
elif onesPlaceDigit == 5:
 stringNum = '5' + stringNum
elif onesPlaceDigit == 6:
 stringNum = '6' + stringNum
elif onesPlaceDigit == 7:
 stringNum = '7' + stringNum
elif onesPlaceDigit == 8:
 stringNum = '8' + stringNum
elif onesPlaceDigit == 9:
 stringNum = '9' + stringNum

However, this code is pretty long and tedious. A more concise and common approach is to create

a dictionary that maps individual integer digits to their string equivalents, and then look up the value

for the onesPlaceDigit key:

DIGITS_INT_TO_STR = {0: '0', 1: '1', 2: '2', 3: '3', 4: '4', 5: '5', 6: '6', 7: '7',
8: '8', 9: '9'}
stringNum = DIGITS_INT_TO_STR[onesPlaceDigit] + stringNum

After this, we can integer divide it by 10 to ―remove‖ the digit in the one’s place of

integerNum. For example, 41096 // 10 evaluates to 4109, effectively removing the 6 from the

number and making the 9 the new digit in the one’s place to convert. Our loop can continue looping

and converting digits until integerNum is 0. For example, doing this to the integer 41096 would

carry out the following operations:

 41096 // 10 = 4109

 4109 // 10 = 410

 410 // 10 = 41

 41 // 10 = 4

 4 // 10 = 0

At this point the algorithm is finished and stringNum contains the string form.

Special Cases and Gotchas

At the start of the function, check if the integerNum parameter is 0 and, if so, immediately

return the string '0'. Our algorithm is such that otherwise it will return the blank string '' for 0,

which is incorrect.

Python Programming Exercises, Gently Explained

97

Now try to write a solution based on the information in the previous sections. If you still have

trouble solving this exercise, read the Solution Template section for additional hints.

Solution Template

Try to first write a solution from scratch. But if you have difficulty, you can use the following

partial program as a starting place. Copy the following code from https://invpy.com/convertinttostr-

template.py and paste it into your code editor. Replace the underscores with code to make a working

program:

def convertIntToStr(integerNum):
 # Special case: Check if integerNum is 0, and return '0' if so:
 if integerNum == ____:
 return ____

 # This dictionary maps single integer digits to string digits:
 DIGITS_INT_TO_STR = {0: '0', 1: '1', 2: '2', 3: '3', 4: '4',
 5: '5', 6: '6', 7: '7', 8: '8', 9: '9'}

 # Make a note whether the number is negative or not, and make
 # integerNum positive for the rest of the function's code:
 if integerNum < ____:
 isNegative = ____
 integerNum = ____
 else:
 isNegative = ____

 # stringNum holds the converted string, and starts off blank:
 stringNum = ____

 # Keeping looping while integerNum is greater than zero:
 while integerNum ____ 0:
 # Mod the integerNum by 10 to get the digit in the ones place:
 onesPlaceDigit = integerNum % ____
 # Put the corresponding string digit at the front of stringNum:
 stringNum = DIGITS_INT_TO_STR[onesPlaceDigit] + ____
 # Divide integerNum by ten to remove one entire digit place:
 integerNum //= ____

 # If the number was originally negative, add a minus sign:
 if isNegative:
 return ____ + stringNum
 else:
 return ____

The complete solution for this exercise is given in Appendix A and

https://invpy.com/convertinttostr.py. You can view each step of this program as it runs under a debugger

at https://invpy.com/convertinttostr-debug/.

98

E X E R C I S E # 3 2 : C O N V E R T S T R I N G S T O

I N T E G E R S

convertStrToInt('42') → 42

To complement Exercise #31, ―Convert Integers to Strings‖, in this exercise we’ll convert strings

of numeric digits into their integer equivalents. The most common use case for this is taking the string

returned from, say, the input() function or a text file’s read() method and converting it to an

integer to perform mathematical operations on it. You can use Python’s int() function to do this

conversion, but in this exercise, you’ll recreate this function yourself.

Exercise Description

Write a convertStrToInt() function with a stringNum parameter. This function returns an

integer form of the parameter just like the int() function. For example,

convertStrToInt('42') should return the integer 42. The function doesn’t have to work for

floating-point numbers with a decimal point, but it should work for negative number values.

Avoid using int()in your code, as that would do the conversion for you and defeat the purpose

of this exercise. However, we do use int() with assert statements to check that your

convertStrToInt() function works the same as int() for all integers from -10000 to 9999:

for i in range(-10000, 10000):
 assert convertStrToInt(str(i)) == i

Try to write a solution based on the information in this description. If you still have trouble

solving this exercise, read the Solution Design and Special Cases and Gotchas sections for

additional hints.

Solution Design

The solution for this exercise is quite different than the int-to-string algorithm. Still, they are both

similar in that they convert one digit and use a dictionary to map between string digits and integer

digits:

DIGITS_STR_TO_INT = {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7,
'8': 8, '9': 9}

Python Programming Exercises, Gently Explained

99

The function creates an integerNum variable to hold the integer form of stringNum as we

build it. This variable starts with the value 0. Your code must also note if there is a minus sign at the

start of the string, in which case

Our algorithm loops over the individual digits in the stringNum parameter, starting on the left

and moving right. The code multiplies current integer in integerNum by 10 to ―move‖ all of these

digits to the left by one place, then adds the current digit.

For example, if we needed to convert the string '41096' to an integer, the code needs to carry

out the following operations:

 integerNum = 0

 integerNum = (0 * 10) + 4 = 4

 integerNum = (4 * 10) + 1 = 41

 integerNum = (41 * 10) + 0 = 410

 integerNum = (410 * 10) + 9 = 4109

 integerNum = (4109 * 10) + 6 = 41096

Before returning, we convert this integer to a negative number if the original string began with a

minus sign.

Special Cases and Gotchas

The convertStrToInt() function must be able to handle strings representing negative

integers. To do this, check if stringNum[0] (the first character in the string) is the '-' dash

character. If so, we can mark an isNegative variable to True (and False otherwise). Then we can

remove this dash character by setting stringNum = stringNum[1:], replacing the string in

stringNum with a string of all the characters in stringNum after the first.

At the end of the function, the function can return -integerNum if isNegative was set to

True.

Now try to write a solution based on the information in the previous sections. If you still have

trouble solving this exercise, read the Solution Template section for additional hints.

Solution Template

Try to first write a solution from scratch. But if you have difficulty, you can use the following

partial program as a starting place. Copy the following code from https://invpy.com/convertstrtoint-

template.py and paste it into your code editor. Replace the underscores with code to make a working

program:

def convertStrToInt(stringNum):
 # This dictionary maps string digits to single integer digits:
 DIGITS_STR_TO_INT = {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4,
 '5': 5, '6': 6, '7': 7, '8': 8, '9': 9}

 # Make a note whether the number is negative or not, and make
 # integerNum positive for the rest of the function's code:
 if stringNum[0] == '-':
 isNegative = True

Python Programming Exercises, Gently Explained

100

 stringNum = stringNum[1:] # Remove the negative sign.
 else:
 isNegative = False

 # integerNum holds the converted integer, and starts off at 0:
 integerNum = 0

 # Loop over the digits in the string from left to right:
 for i in range(len(stringNum)):
 # Get the integer digit from the string digit:
 digit = DIGITS_STR_TO_INT[stringNum[i]]
 # Add this to the integer number:
 integerNum = (integerNum * 10) + digit

 # If the number was originally negative, make the integer
 # negative before returning it:
 if isNegative:
 return -integerNum
 else:
 return integerNum

The complete solution for this exercise is given in Appendix A and

https://invpy.com/convertstrtoint.py. You can view each step of this program as it runs under a debugger

at https://invpy.com/convertstrtoint-debug/.

101

E X E R C I S E # 3 3 : C O M M A - F O R M A T T E D

N U M B E R S

commaFormat(12345) → '12,345'

In the US and UK, the digits of numbers are grouped with commas every three digits. For

example, the number 79033516 is written as 79,033,516 for readability. In this exercise, you’ll write a

function that takes a number and returns a string of the number with comma formatting.

Exercise Description

Write a commaFormat() function with a number parameter. The argument for this parameter

can be an integer or floating-point number. Your function returns a string of this number with proper

US/UK comma formatting. There is a comma after every third digit in the whole number part. There

are no commas at all in the fractional part: The proper comma formatting of 1234.5678 is 1,234.5678

and not 1,234.567,8.

These Python assert statements stop the program if their condition is False. Copy them to

the bottom of your solution program. Your solution is correct if the following assert statements’

conditions are all True:

assert commaFormat(1) == '1'
assert commaFormat(10) == '10'
assert commaFormat(100) == '100'
assert commaFormat(1000) == '1,000'
assert commaFormat(10000) == '10,000'
assert commaFormat(100000) == '100,000'
assert commaFormat(1000000) == '1,000,000'
assert commaFormat(1234567890) == '1,234,567,890'
assert commaFormat(1000.123456) == '1,000.123456'

Try to write a solution based on the information in this description. If you still have trouble

solving this exercise, read the Solution Design and Special Cases and Gotchas sections for

additional hints.

Prerequisite concepts: strings, str(), in operator, index(), slices, string concatenation

Python Programming Exercises, Gently Explained

102

Solution Design

Despite involving numbers, this exercise is actually about text manipulation. The characters of

the string just happen to be numeric digits.

First, we convert the number argument to a string with the str() function. This will work

whether the number is an integer or a floating-point number. Once we have the number as a string,

we can check for the existence of a period which indicates it was a floating-point number with a

fractional part. The expression '.' in number evaluates to True if the string in number has a

period character. Next, we can use number.index('.') to find the index of this period character.

(The index() method raises a ValueError exception if '.' doesn’t appear in the string, but the

previous '.' in number expression being True guarantees that it does.)

We need to remove this fractional part from number while saving it in another variable to add

back in later. This way we are only adding commas to the whole number part of the number

argument, whether or not it was an integer or floating-point number.

Next, let’s start variables named triplet and commaNumber as blank strings. As we loop over

the digits of number, the triplet variable will store digits until it has three of them, at which point

we add them to commaNumber (which contains the comma-formatted version of number) with a

comma. The first time we add triplet to commaNumber, there will be an extra comma at the end

of a number. For example, the triplet '248' gets added to commaNumber as '248,'. We can

remove the extra comma just before returning the number.

We need to loop starting at the one’s place in the number and moving left, so our for loop

should work in reverse: for i in range(len(number) - 1, -1, -1). For example, if

number is 4096, then the first iteration of the loop can access number[3], the second iteration can

access number[2], and so on. This way the first triplet ends up being '096' instead of '409'.

If the loop finishes and there are leftover digits in triplet, add them to commaNumber with a

comma. Finally, return commaNumber except with the comma at the end truncated:

commaNumber[:-1] evaluates to everything in commaNumber except the last character.

Finally, we need to add the fractional part back in the number if there was one originally.

Special Cases and Gotchas

Several bugs that can occur in our code. We should consider them ahead of writing our code so

we can ensure they don’t sneak past us. These bugs could include:

 A comma at the end of number, e.g., 386 producing '386,'

 A comma at the front of a number, e.g., 499000 producing ',499,000'

 Commas appearing in the fraction part, e.g., 12.3333 producing '12.3,333'

 Grouping triplets in reverse order, e.g., 4096 producing '409,6'

However you tackle this exercise, ensure that your code doesn’t make any of these mistakes.

Now try to write a solution based on the information in the previous sections. If you still have

trouble solving this exercise, read the Solution Template section for additional hints.

Python Programming Exercises, Gently Explained

103

Solution Template

Try to first write a solution from scratch. But if you have difficulty, you can use the following

partial program as a starting place. Copy the following code from https://invpy.com/commaformat-

template.py and paste it into your code editor. Replace the underscores with code to make a working

program:

def commaFormat(number):
 # Convert the number to a string:
 number = str(____)

 # Remember the fractional part and remove it from the number, if any:
 if '.' in ____:
 fractionalPart = number[number.index(____):]
 number = number[:number.index('.')]
 else:
 fractionalPart = ''

 # Create a variable to hold triplets of digits and the
 # comma-formatted string as it is built:
 triplet = ____
 commaNumber = ____

 # Loop over the digits starting on the right side and going left:
 for i in range(len(number) - 1, ____, ____):
 # Add the digits to the triplet variable:
 triplet = ____[i] + ____
 # When the triplet variable has three digits, add it with a
 # comma to the comma-formatted string:
 if ____(triplet) == ____:
 commaNumber = triplet + ',' + ____
 # Reset the triplet variable back to a blank string:
 triplet = ____

 # If the triplet has any digits left over, add it with a comma
 # to the comma-formatted string:
 if triplet != '':
 commaNumber = ____ + ',' + ____

 # Return the comma-formatted string:
 return ____[:____] + fractionalPart

The complete solution for this exercise is given in Appendix A and

https://invpy.com/commaformat.py. You can view each step of this program as it runs under a debugger at

https://invpy.com/commaformat-debug/.

104

E X E R C I S E # 3 4 : U P P E R C A S E L E T T E R S

getUppercase('Hello') → 'HELLO'

Python is known as a ―batteries included‖ language because its standard library comes with many

useful functions and modules. One of these is the upper() string method, which returns an

uppercase version of the string: 'Hello'.upper() evaluates to 'HELLO'. However, in this

exercise, you’ll create your own implementation of this method.

Exercise Description

Write a getUppercase() function with a text string parameter. The function returns a string

with all lowercase letters in text converted to uppercase. Any non-letter characters in text remain

as they are. For example, 'Hello' causes getUppercase() to return 'HELLO' but 'goodbye
123!' returns 'GOODBYE 123!'.

These Python assert statements stop the program if their condition is False. Copy them to

the bottom of your solution program. Your solution is correct if the following assert statements’

conditions are all True:

assert getUppercase('Hello') == 'HELLO'
assert getUppercase('hello') == 'HELLO'
assert getUppercase('HELLO') == 'HELLO'
assert getUppercase('Hello, world!') == 'HELLO, WORLD!'
assert getUppercase('goodbye 123!') == 'GOODBYE 123!'
assert getUppercase('12345') == '12345'
assert getUppercase('') == ''

Try to write a solution based on the information in this description. If you still have trouble

solving this exercise, read the Solution Design and Special Cases and Gotchas sections for

additional hints.

Prerequisite concepts: for loops, in operator, string concatenation, indexes

Solution Design

The getUppercase() function should start with a new, empty string that will only contain

non-lowercase characters. Then, we can use a loop to go over each character in the text parameter,

copying characters to this new string. If the character is a lowercase letter, we can copy the uppercase

Python Programming Exercises, Gently Explained

105

version of that letter. Otherwise, a non-lowercase letter character can be copied to the new string as-

is. After the loop finishes, getUppercase() returns the newly-built uppercase string.

Getting the uppercase version of a letter will involve a dictionary that maps lowercase letters to

uppercase letters. If a character from the text parameter exists as a key in the dictionary, we know it

is a letter and the dictionary contains its corresponding uppercase version. This uppercase letter is

concatenated to the end of the returned string. Otherwise, the original character from text is

concatenated to the returned string.

Special Cases and Gotchas

The getUppercase() function should work equally well whether the text parameter is in

lowercase or already in uppercase. Also, any non-letter characters aren't affected by the

getUppercase() function.

Note that using the dictionary that maps lowercase letters to uppercase letters means our

program only works for the basic 26 letters of the English alphabet. Therefore, it can’t convert letters

with accent marks to uppercase, such as 'ñ' to 'Ñ', the way Python’s upper() string method can.

You would have to add every accented letter to the dictionary if you want it to be converted to

uppercase.

Now try to write a solution based on the information in the previous sections. If you still have

trouble solving this exercise, read the Solution Template section for additional hints.

Solution Template

Try to first write a solution from scratch. But if you have difficulty, you can use the following

partial program as a starting place. Copy the following code from https://invpy.com/uppercase-template.py

and paste it into your code editor. Replace the underscores with code to make a working program:

Map the lowercase letters to uppercase letters.
LOWER_TO_UPPER = {'a': 'A', 'b': 'B', 'c': 'C', 'd': 'D', 'e': 'E', 'f': 'F', 'g':
'G', 'h': 'H', 'i': 'I', 'j': 'J', 'k': 'K', 'l': 'L', 'm': 'M', 'n': 'N', 'o': 'O',
'p': 'P', 'q': 'Q', 'r': 'R', 's': 'S', 't': 'T', 'u': 'U', 'v': 'V', 'w': 'W', 'x':
'X', 'y': 'Y', 'z': 'Z'}

def getUppercase(text):
 # Create a new variable that starts as a blank string and will
 # hold the uppercase form of text:
 uppercaseText = ''
 # Loop over all the characters in text, adding non-lowercase
 # characters to our new string:
 for character in ____:
 if character in ____:
 # Append the uppercase form to the new string:
 uppercaseText += ____[____]
 else:
 uppercaseText += ____

 # Return the uppercase string:
 return ____

The complete solution for this exercise is given in Appendix A and https://invpy.com/uppercase.py.

You can view each step of this program as it runs under a debugger at https://invpy.com/uppercase-

Python Programming Exercises, Gently Explained

106

debug/.

107

E X E R C I S E # 3 5 : T I T L E C A S E

getTitleCase('cat dog moose') → 'Cat Dog Moose'

In this exercise, you’ll have to convert a string to title case where every word in the string begins

with an uppercase letter. The remaining letters in the word are in lowercase. Title case is a slight

increase in complexity compared to Exercise #34, ―Uppercase Letters‖, so I advise that you solve that

exercise before attempting this one.

Exercise Description

Write a getTitleCase() function with a text parameter. The function should return the title

case form of the string: every word begins with an uppercase and the remaining letters are lowercase.

Non-letter characters separate words in the string. This means that 'Hello World' is considered to

be two words while 'HelloWorld' is considered to be one word. Not only spaces, but all non-letter

characters can separate words, so 'Hello5World' and 'Hello@World' also have two words.

Python’s upper() and lower() string methods return uppercase and lowercase forms of the

string, and you can use these in your implementation. You may also use the isalpha() string

method, which returns True if the string contains only uppercase or lowercase letter characters.

However, you may not use Python’s title() string method, as that would defeat the purpose of the

exercise. Similarly, while you need to split up a string into individual words, don’t use Python’s

split() string method.

These Python assert statements stop the program if their condition is False. Copy them to

the bottom of your solution program. Your solution is correct if the following assert statements’

conditions are all True:

assert getTitleCase('Hello, world!') == 'Hello, World!'
assert getTitleCase('HELLO') == 'Hello'
assert getTitleCase('hello') == 'Hello'
assert getTitleCase('hElLo') == 'Hello'
assert getTitleCase('') == ''
assert getTitleCase('abc123xyz') == 'Abc123Xyz'
assert getTitleCase('cat dog RAT') == 'Cat Dog Rat'
assert getTitleCase('cat,dog,RAT') == 'Cat,Dog,Rat'

import random
random.seed(42)
chars = list('abcdefghijklmnopqrstuvwxyz1234567890 ,.')

Python Programming Exercises, Gently Explained

108

for i in range(1000):
 random.shuffle(chars)
 assert getTitleCase(''.join(chars)) == ''.join(chars).title()

The code in the for loop generates random strings and checks that your getTitleCase()

function returns the same string that Python’s built-in title() string method does. This allows us

to quickly generate 1,000 test cases for your solution.

Try to write a solution based on the information in this description. If you still have trouble

solving this exercise, read the Solution Design and Special Cases and Gotchas sections for

additional hints.

Prerequisite concepts: strings, for loops, range(), len(), upper(), isalpha(), lower()

Solution Design

The main challenge in this exercise isn’t converting letters to uppercase and lowercase but

splitting the string up into individual words. We don’t need to use Python’s split() string method

or the advanced regular expressions library. Look at the three example strings with the first letter of

each word highlighted in Figure 35-1.

Figure 35-1: Three strings with the first letter of every word highlighted.

By looking at these examples, we can figure out that what makes a character in the string the first

letter of a word is that the character is either the first character of the string (at index 0) or follows a

non-letter character. Our title case string will have these letters in uppercase and every other letter

lowercase. Non-letter characters remain as they are.

Our function can start with a variable named titledText that holds the title case string form

of the text parameter as we build it. Then a for loop can loop over all the indexes of the string. If

the index is 0 (meaning it is at the start of the string) or the character at the previous index is not a

letter, add the uppercase form of the character to titledText. Otherwise, add the lowercase form

of the character to titledText.

Note that Python’s upper() and lower() string methods have no effect on strings of non-

letter characters. The expression '42!'.upper() and '42!'.lower() both evaluate to '42!'.

By the time the for loop has finished, titledText contains the complete title case form of

text for the function to return.

Python Programming Exercises, Gently Explained

109

Special Cases and Gotchas

Title case not only means the first letter is in uppercase, but all other letters must be lowercase.

It’s not enough to only make the first letter uppercase. You must also force the remaining letters to be

lowercase. Converting the string 'mcCloud' to title case doesn’t result in 'McCloud' but rather

'Mccloud'.

There is also a boundary condition you should be aware of when looking at the ―previous index‖

in the for loop. You can easily calculate the previous index from the index i with the expression i -
1, but there’s a catch: when i is 0, this results in -1 which refers to the last index of the string. Your

code must explicitly make sure you aren’t checking the previous index for the first index of the string,

because there is no previous index in that case.

Now try to write a solution based on the information in the previous sections. If you still have

trouble solving this exercise, read the Solution Template section for additional hints.

Solution Template

Try to first write a solution from scratch. But if you have difficulty, you can use the following

partial program as a starting place. Copy the following code from https://invpy.com/titlecase-template.py

and paste it into your code editor. Replace the underscores with code to make a working program:

def getTitleCase(text):
 # Create a titledText variable to store the titlecase text:
 titledText = ____
 # Loop over every index in text:
 for i in range(len(____)):
 # The character at the start of text should be uppercase:
 if i == ____:
 titledText += text[i].____()
 # If the character is a letter and the previous character is
 # not a letter, make it uppercase:
 elif text[____].isalpha() and not text[i - ____].isalpha():
 titledText += text[____].upper()
 # Otherwise, make it lowercase:
 else:
 titledText += text[i].____()
 # Return the titled cased string:
 return titledText

The complete solution for this exercise is given in Appendix A and https://invpy.com/titlecase.py.

You can view each step of this program as it runs under a debugger at https://invpy.com/titlecase-debug/.

110

E X E R C I S E # 3 6 : R E V E R S E S T R I N G

reverseString('Hello') → 'olleH'

Strings are immutable in the Python language, meaning you can’t modify their characters the way

you can modify the items in a list. For example, if you tried to change 'Rat' to 'Ram' with the

assignment statement 'Rat'[2] = 'm', you would receive a TypeError: 'str' object
does not support item assignment error message. On the other hand, if you store a string

'Rat' in a variable named animal, the assignment statement animal = 'Ram' isn’t modifying the 'Rat'

string but rather making animal refer to an entirely new string, 'Ram'.

We can modify an existing string is to create a list of single-character strings, modify the list, and

then create a new string from the list. Enter the following into the interactive shell:

>>> animal = 'Rat'
>>> animal = list(animal)
>>> animal
['R', 'a', 't']
>>> animal[2] = 'm'
>>> animal
['R', 'a', 'm']
>>> animal = ''.join(animal)
>>> animal
'Ram'

We’ll use this technique to reverse the characters in a string.

Exercise Description

Write a reverseString() function with a text parameter. The function should return a

string with all of text’s characters in reverse order. For example, reverseString('Hello')

returns 'olleH'. The function should not alter the casing of any letters. And, if text is a blank

string, the function returns a blank string.

These Python assert statements stop the program if their condition is False. Copy them to

the bottom of your solution program. Your solution is correct if the following assert statements’

conditions are all True:

assert reverseString('Hello') == 'olleH'
assert reverseString('') == ''

Python Programming Exercises, Gently Explained

111

assert reverseString('aaazzz') == 'zzzaaa'
assert reverseString('xxxx') == 'xxxx'

Try to write a solution based on the information in this description. If you still have trouble

solving this exercise, read the Solution Design and Special Cases and Gotchas sections for

additional hints.

Prerequisite concepts: lists, list(), for loops, range(), len(), integer division, indexes,

swapping values, join()

Solution Design

Instead of building up a string from the characters in text in reverse order, let’s make our

function first convert the string in text into a list of single-character strings. Python’s list()

function does when we pass it a string. For example, list('Hello') returns the list value ['H',
'e', 'l', 'l', 'o']. We can assign this list as the new value of text.

Once we have the characters of text in a list, create a for loop that loops over the first half of

the list’s indexes. This can be calculated from the expression len(text) // 2. We want to replace

the character at each index with the character at the ―mirror‖ index in the second half of the list. The

mirror of the first index is the last index, the mirror of the second index is the second to last index,

the mirror of the third index is the third to last index, and so on.

To calculate the mirror of an index i in text, you would want len(text) - 1 - i. For

example, the mirror of index 0 is len(text) - 1 - 0, the mirror of index 1 is len(text) - 1
- 1, the mirror of index 2 is len(text) - 1 - 2, and so on.

Python’s assignment statement allows you to swap two values simultaneously. For example, the

assignment statement myList[0], myList[5] = myList[5], myList[0] swaps the values

at indexes 0 and 5 in a hypothetical myList variable.

Figure 36-1 shows the characters of a hypothetical 12-item list made from 'Hello, world'

being swapped until the string is reversed.

Python Programming Exercises, Gently Explained

112

Figure 36-1: The process of reversing a list of single-character strings by swapping their mirror
indexes.

Finally, the join() string method creates a string from the text list with the instruction

''.join(text). This is the string the reverseString() function should return.

Special Cases and Gotchas

You may think that you need two different algorithms depending on if the string to reverse has

an odd or even number of characters. However, it turns out this doesn’t matter. If the text string

has an odd number of characters, like the 5 characters in the list ['H', 'e', 'l', 'l', 'o'],

then swapping the middle character at index 2 with itself doesn’t change the list.

Now try to write a solution based on the information in the previous sections. If you still have

trouble solving this exercise, read the Solution Template section for additional hints.

Solution Template

Try to first write a solution from scratch. But if you have difficulty, you can use the following

partial program as a starting place. Copy the following code from https://invpy.com/reversestring-

template.py and paste it into your code editor. Replace the underscores with code to make a working

program:

def reverseString(text):
 # Convert the text string into a list of character strings:
 text = ____(text)
 # Loop over the first half of indexes in the list:
 for i in range(len(____) // ____):
 # Swap the values of i and it's mirror index in the second
 # half of the list:

Python Programming Exercises, Gently Explained

113

 mirrorIndex = len(text) - ____ - ____
 text[i], text[mirrorIndex] = text[____], text[____]
 # Join the list of strings into a single string and return it:
 return ''.join(text)

The complete solution for this exercise is given in Appendix A and

https://invpy.com/reversestring.py. You can view each step of this program as it runs under a debugger at

https://invpy.com/reversestring-debug/.

114

E X E R C I S E # 3 7 : C H A N G E M A K E R

makeChange(30) → {'quarters': 1, 'nickels': 1}

American currency has coins in the denominations of 1 (pennies), 5 (nickels), 10 (dimes), and 25

cents (quarters). Imagine that we were programming a cash register to dispense correct change. In this

exercise, we would need to calculate the number of each coin for a given amount of change.

Exercise Description

Write a makeChange() function with an amount parameter. The amount parameter contains

an integer of the number of cents to make change for. For example, 30 would represent 30 cents and

125 would represent $1.25. This function should return a dictionary with keys 'quarters',

'dimes', 'nickels', and 'pennies', where the value for a key is an integer of the number of

this type of coin.

The value for a coin’s key should never be 0. Instead, the key should not be present in the

dictionary. For example, makeChange(5) should return {'nickels': 1} and not

{'quarters’: 0, 'dimes': 0, 'nickels': 1, 'pennies': 0}.

For example, makeChange(30) would returns the dictionary {'quarters': 1,
'nickels': 5} to represent the coins used for 30 cents change. The function should use the

minimal number of coins. For example, makeChange(10) should return {'dimes': 1} and not

{'nickels': 2}, even though they both add up to 10 cents.

These Python assert statements stop the program if their condition is False. Copy them to

the bottom of your solution program. Your solution is correct if the following assert statements’

conditions are all True:

assert makeChange(30) == {'quarters': 1, 'nickels': 1}
assert makeChange(10) == {'dimes': 1}
assert makeChange(57) == {'quarters': 2, 'nickels': 1, 'pennies': 2}
assert makeChange(100) == {'quarters': 4}
assert makeChange(125) == {'quarters': 5}

Try to write a solution based on the information in this description. If you still have trouble

solving this exercise, read the Solution Design and Special Cases and Gotchas sections for

additional hints.

Prerequisite concepts: modulo operator, integer division

Python Programming Exercises, Gently Explained

115

Solution Design

First, our makeChange() function should create an empty dictionary in a variable named

change to store the results to return. Next, we need to determine the amount of each type of coin,

starting with the largest denominations (25-cent quarters) to the smallest (1-cent pennies). This way,

we don’t accidentally use more than the minimum amount of coins by determining we need, for

example, two 5-cent nickels instead of one 10 cent dime.

Let’s start with quarters. Before doing any calculation, if the amount of change to make is less

than 25, then we can skip this calculation entirely since there are zero quarters. Otherwise, if the

amount of change to make is divisible by 25, say the amount parameter is 125, then we can

determine the number of quarters by dividing amount by 25: 125 / 25 evaluates to 5.0.

However, if it isn’t divisible by 25, our result will have a fractional part: 135 / 25 evaluates to

5.4. We can only add whole numbers of quarters to our change, not 0.4 quarters. Using the //

integer division operator, we can ensure that we only put whole numbers of coins into our change

dictionary: both 125 // 25 and 135 // 25 evaluate to 5.

To deduct the amount of change held by the quarters, we can set change to the amount

remaining after removing 25 cent increments. The word ―remaining‖ hints that we should use the %

modulo operator. For example, if we need to make 135 cents of change and use 5 quarters for 125 of

those cents, we would need to use other coins for the 135 % 25 or 10 remaining cents.

This handles calculating the number of quarters used to make change. We would then copy-paste

this code and make modifications for dimes, nickels, and pennies (in that order). When we finish

processing the number of pennies, the amount parameter will be 0 and the change dictionary will

contain the correct amounts of each coin.

Special Cases and Gotcha

Because this exercise specifies that the change should be made from the minimal number of

coins, there is only one correct answer for any given amount of change. The most important thing to

get right in this algorithm is to calculate the coins in order from largest to smallest, otherwise you’ll

end up in a situation where, say, you use two nickels instead of one dime.

Also, be sure to use the // integer division operator instead of the / division operator to

calculate the number of coins. Python’s regular division operator evaluates to floating-point numbers,

which may contain a fractional part. (Even if it doesn’t, Python still evaluates the result to a float: 125
/ 25 evaluates to the float 5.0 and not the integer 5.) Integer division always evaluates to integers

and doesn’t have this potential problem.

Because pennies represent 1 cent, you can set the number of pennies in change to whatever the

amount parameter is at the end of the function as long as it is greater than zero.

Now try to write a solution based on the information in the previous sections. If you still have

trouble solving this exercise, read the Solution Template section for additional hints.

Solution Template

Try to first write a solution from scratch. But if you have difficulty, you can use the following

partial program as a starting place. Copy the following code from https://invpy.com/makechange-

template.py and paste it into your code editor. Replace the underscores with code to make a working

program:

Python Programming Exercises, Gently Explained

116

def makeChange(amount):
 # Create a dictionary to keep track of how many of each coin:
 change = ____

 # If the amount is enough to add quarters, add them:
 if amount >= ____:
 change['quarters'] = amount // ____
 # Reduce the amount by the value of the quarters added:
 amount = amount % ____
 # If the amount is enough to add dimes, add them:
 if amount >= ____:
 change['dimes'] = ____ // ____
 # Reduce the amount by the value of the dimes added:
 amount = ____ % ____
 # If the amount is enough to add nickels, add them:
 if amount >= ____:
 change['nickels'] = ____ // ____
 # Reduce the amount by the value of the nickels added:
 amount = ____ % ____
 # If the amount is enough to add pennies, add them:
 if amount >= 1:
 change[____] = amount

 return change

The complete solution for this exercise is given in Appendix A and

https://invpy.com/makechange.py. You can view each step of this program as it runs under a debugger at

https://invpy.com/makechange-debug/.

117

E X E R C I S E # 3 8 : R A N D O M S H U F F L E

shuffle([1, 2, 3, 4, 5]) → [3, 1, 4, 5, 2]

A random shuffle algorithm puts the values in a list into a random order, like shuffling a deck of

cards. This algorithm produces a new permutation, or ordering, of the values in the list. The algorithm

works by looping over each value in the list and randomly determining a new index with which to

swap it. As a result, the values in the list are in random order.

For a list of n values, there are n! (―n factorial‖) possible permutations. For example, a 10-value

list has 10! or 10 × 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1 or 3,628,800 possible ways to order them.

This exercise modifies the list passed to it in-place, rather than creating a new list and returning it.

Because lists are mutable objects in Python, modifications made to a parameter are actually modifying

the original object passed to the function call for that parameter. For example, enter the following

into the interactive shell:

>>> someList = [1, 2, 3] # Let's create a list object.
>>> def someFunc(someParam):
... someParam[0] = 'dog' # This is changing the list in-place.
... someParam.append('xyz') # This is changing the list in-place.
...
>>> someList
[1, 2, 3]
>>> someFunc(someList) # Pass the list as the argument.
>>> someList # Note that the list object has been modified by the function.
['dog', 2, 3, 'xyz']

Notice that the someList list is passed as the argument for the someParam parameter of the

someFunc() function. This function modifies someParam (which refers to the same list object that

the someList variable refers to), so these modifications are still there after the function returns. The

someFunc() function isn’t returning a new list to replace someList; it’s modifying someList in-

place.

In Python, only mutable objects (such as lists, dictionaries, and sets) can be modified in-place.

Immutable objects (such a strings, integers, tuples, and frozen sets) can’t be modified in-place.

Exercise Description

Write a shuffle() function with a values parameter set to a list of values. The function

doesn’t return anything, but rather it sets each value in the list to a random index. The resulting

Python Programming Exercises, Gently Explained

118

shuffled list must contain the same values as before but in random order.

This exercise asks you to implement a function identical to Python’s random.shuffle()

function. As such, avoid using this function in your solution as it’d defeat the purpose of the exercise.

These Python assert statements stop the program if their condition is False. Copy them to

the bottom of your solution program. Your solution is correct if the following assert statements’

conditions are all True:

random.seed(42)
Perform this test ten times:
for i in range(10):
 testData1 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
 shuffle(testData1)
 # Make sure the number of values hasn't changed:
 assert len(testData1) == 10
 # Make sure the order has changed:
 assert testData1 != [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
 # Make sure that when re-sorted, all the original values are there:
 assert sorted(testData1) == [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Make sure an empty list shuffled remains empty:
testData2 = []
shuffle(testData2)
assert testData2 == []

Try to write a solution based on the information in this description. If you still have trouble

solving this exercise, read the Solution Design and Special Cases and Gotchas sections for

additional hints.

Prerequisite concepts: import statements, random module, randint(), for loops, range(),

len(), swapping values

Solution Design

The solution is surprisingly straightforward. A for loop can loop over every index in the list. On

each iteration, the code in the loop selects a random index. Then it swaps the values at the current

iteration’s index and the random index.

If the random index is the same as the current iteration’s index, this is fine: a random shuffling

can include values at their original location. This isn’t somehow ―less random‖ than any other

permutation. If the random index is a repeat of an index that has previously been swapped, this is fine

as well. Shuffling a value to a random location twice isn’t any more or less shuffled than moving a

value to a random location once.

Special Cases and Gotchas

Take care that your shuffle() function doesn’t add or remove any values to the list; it should

only rearrange the values already in the list. Because the shuffle() function modifies the values list

argument in-place, it doesn’t need to return anything. There shouldn’t be a return statement

anywhere in the function. In Python, all functions technically return a value; it’s just that functions

with no return statement return the value None.

When selecting a random index, select only an index within the range of the list’s indexes. This

means you should select an index from 0 up to, but not including, the length of the list. When calling

Python Programming Exercises, Gently Explained

119

random.randint() to generate this random index, you’ll want to use 0 and len(values) - 1

to represent this range, and not 0 and len(values).

Now try to write a solution based on the information in the previous sections. If you still have

trouble solving this exercise, read the Solution Template section for additional hints.

Solution Template

Try to first write a solution from scratch. But if you have difficulty, you can use the following

partial program as a starting place. Copy the following code from https://invpy.com/randomshuffle-

template.py and paste it into your code editor. Replace the underscores with code to make a working

program:

Import the random module for its randint() function.
import random

def shuffle(values):
 # Loop over the range of indexes from 0 up to the length of the list:
 for i in range(____(values)):
 # Randomly pick an index to swap with:
 swapIndex = random.randint(0, len(____) - ____)
 # Swap the values between the two indexes:
 values[i], values[swapIndex] = values[____], values[____]

The complete solution for this exercise is given in Appendix A and

https://invpy.com/randomshuffle.py. You can view each step of this program as it runs under a debugger

at https://invpy.com/randomshuffle-debug/.

120

E X E R C I S E # 3 9 : C O L L A T Z S E Q U E N C E

collatz(10) → [10, 5, 16, 8, 4, 2, 1]

The Collatz Sequence also called the 3n + 1 problem, is a simple but mysterious numeric

sequence that has remained unsolved by mathematicians. It has four rules:

 Begin with a positive, nonzero integer called n.

 If n is 1, the sequence terminates.

 If n is even, the next value of n is n / 2.

 If n is odd, the next value of n is 3n + 1.

For example, if the starting integer is 10, that number is even so the next number is 10 / 2, or 5.

5 is odd, so the next number is 3 × 5 + 1, or 16. 16 is even, so the next number is 8, which is even so

the next number is 4, then 2, then 1. At 1, the sequence stops. The entire Collatz Sequence starting at

10 is: 10, 5, 16, 8, 4, 2, 1

Mathematicians have been unable to prove if every starting integer eventually terminates. This

gives the Collatz Sequence the description of ―the simplest impossible math problem.‖ However, in

this exercise, all you need to do is calculate the sequence of numbers for a given starting integer.

Exercise Description

Write a function named collatz() with a startingNumber parameter. The function returns

a list of integers of the Collatz sequence that startingNumber produces. The first integer in this list

must be startingNumber and the last integer must be 1.

Your function should check if startingNumber is an integer less than 1, and in that case,

return an empty list.

These Python assert statements stop the program if their condition is False. Copy them to

the bottom of your solution program. Your solution is correct if the following assert statements’

conditions are all True:

assert collatz(0) == []
assert collatz(10) == [10, 5, 16, 8, 4, 2, 1]
assert collatz(11) == [11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1]
assert collatz(12) == [12, 6, 3, 10, 5, 16, 8, 4, 2, 1]

Python Programming Exercises, Gently Explained

121

assert len(collatz(256)) == 9
assert len(collatz(257)) == 123
import random
random.seed(42)
for i in range(1000):
 startingNum = random.randint(1, 10000)
 seq = collatz(startingNum)
 assert seq[0] == startingNum # Make sure it includes the starting number.
 assert seq[-1] == 1 # Make sure the last integer is 1.

Try to write a solution based on the information in this description. If you still have trouble

solving this exercise, read the Solution Design and Special Cases and Gotchas sections for

additional hints.

Prerequisite concepts: lists, while loops, modulo operator, integer division, append()

Solution Design

The function only needs a variable to keep track of the current number, which we can call num,

and a variable to hold the sequence of values, which we can call sequence. At the start of the

function, set num to the integer in startingNumber parameter and sequence to [num]. We can

use a while loop that continues to loop as long as the num is not 1. On each iteration of the loop,

the next value for num is calculated based on whether num is currently odd or even. You can use the

modulo 2 technique from Exercise #3, ―Odd & Even‖ to determine this: if num % 2 evaluates to 0

then num is even and if it evaluates to 1 then num is odd. After this, append num to the end of the

sequence list.

If num is exactly 1, then the while loop stops looping and the function can return sequence.

Special Cases and Gotchas

The only special case is if the startingNumber parameter is less than 1, in which case there is

no sequence and the function should return an empty list [].

Now try to write a solution based on the information in the previous sections. If you still have

trouble solving this exercise, read the Solution Template section for additional hints.

Solution Template

Try to first write a solution from scratch. But if you have difficulty, you can use the following

partial program as a starting place. Copy the following code from https://invpy.com/collatzsequence-

template.py and paste it into your code editor. Replace the underscores with code to make a working

program:

def collatz(startingNumber):
 # If the starting number is 0 or negative, return an empty list:
 if ____ < 1:
 return ____

 # Create a list to hold the sequence, beginning with the starting number:
 sequence = [____]
 num = ____
 # Keep looping until the current number is 1:

Python Programming Exercises, Gently Explained

122

 while num ____ 1:
 # If odd, the next number is 3 times the current number plus 1:
 if num % 2 == ____:
 num = 3 * num + 1
 # If even, the next number is half the current number:
 else:
 num = num // ____
 # Record the number in the sequence list:
 sequence.append(____)

 # Return the sequence of numbers:
 return ____

The complete solution for this exercise is given in Appendix A and

https://invpy.com/collatzsequence.py. You can view each step of this program as it runs under a debugger

at https://invpy.com/collatzsequence-debug/.

Further Reading

You can find out more about the Collatz sequence on Wikipedia at

https://en.wikipedia.org/wiki/Collatz_conjecture. There are videos on YouTube about the sequence on the

Veritasium channel titled ―The Simplest Math Problem No One Can Solve - Collatz Conjecture‖ at

https://youtu.be/094y1Z2wpJg and and the Numberphile channel titled ―UNCRACKABLE? The

Collatz Conjecture‖ at https://youtu.be/5mFpVDpKX70.

123

E X E R C I S E # 4 0 : M E R G I N G T W O S O R T E D

L I S T S

mergeTwoLists([1, 3, 6], [5, 7, 8, 9]) → [1, 3, 5, 6, 7, 8, 9]

One of the most efficient sorting algorithms is the merge sort algorithm. Merge sort has two

phases: the dividing phase and the merge phase. We won’t dive into this advanced algorithm in this

book. However, we can write code for the second half: merging two pre-sorted lists of integers into a

single sorted list.

Exercise Description

Write a mergeTwoLists() function with two parameters list1 and list2. The lists of

numbers passed for these parameters are already in sorted order from smallest to largest number. The

function returns a single sorted list of all numbers from these two lists.

You could write this function in one line of code by using Python’s sorted() function:

return sorted(list1 + list2)

But this would defeat the purpose of the exercise, so don’t use the sorted() function or

sort() method as part of your solution.

These Python assert statements stop the program if their condition is False. Copy them to

the bottom of your solution program. Your solution is correct if the following assert statements’

conditions are all True:

assert mergeTwoLists([1, 3, 6], [5, 7, 8, 9]) == [1, 3, 5, 6, 7, 8, 9]
assert mergeTwoLists([1, 2, 3], [4, 5]) == [1, 2, 3, 4, 5]
assert mergeTwoLists([4, 5], [1, 2, 3]) == [1, 2, 3, 4, 5]
assert mergeTwoLists([2, 2, 2], [2, 2, 2]) == [2, 2, 2, 2, 2, 2]
assert mergeTwoLists([1, 2, 3], []) == [1, 2, 3]
assert mergeTwoLists([], [1, 2, 3]) == [1, 2, 3]

Try to write a solution based on the information in this description. If you still have trouble

solving this exercise, read the Solution Design and Special Cases and Gotchas sections for

additional hints.

Prerequisite concepts: lists, while loops, Boolean operators, append(), for loops, range()

with two arguments, len()

Python Programming Exercises, Gently Explained

124

Solution Design

The lists of integers, already in sorted order, are passed to the function as parameters list1 and

list2. The algorithm begins with two variables, i1 and i2, which both begin at index 0 of their

respective lists. We also create a blank list in a variable named result which stores the merged

results of the two lists.

Inside of a while loop, the code does the following:

 Look at the numbers that i1 and i2 point to.

 Append the smaller of the two numbers to result.

 If i1’s number was appended, increment i1 to point to the next number in list1.

Otherwise, increment i2 to point to the next number in list2.

 Repeat until either i1 or i2 has gone past the end of their list.

For example, Figure 40-1 shows the first three iterations of the loop when merging lists [1, 3,
6] and [5, 7, 8, 9].

Figure 40-1: The first three iterations of the loop that merges two lists.

Think of this code as like an asymmetrical zipper: the i1 and i2 variables keep moving right

along their respective lists, appending their values to result. When either i1 or i2 reaches the end of

their list, the rest of the other list is appended to result. This result list contains all of the

numbers in list1 and list2 in sorted order, so the function returns it.

Python Programming Exercises, Gently Explained

125

Special Cases and Gotchas

Keep in mind that while the list1 and list2 parameters must be sorted lists, they aren’t

required to be the same length.

If either of these list arguments to mergeTwoLists() isn’t sorted, the function will return a

merged list that is also not in sorted order. For this exercise, however, we’ll assume that

mergeTwoLists() is always called with valid arguments.

Now try to write a solution based on the information in the previous sections. If you still have

trouble solving this exercise, read the Solution Template section for additional hints.

Solution Template

Try to first write a solution from scratch. But if you have difficulty, you can use the following

partial program as a starting place. Copy the following code from https://invpy.com/mergetwolists-

template.py and paste it into your code editor. Replace the underscores with code to make a working

program:

def mergeTwoLists(list1, list2):
 # Create an empty list to hold the final sorted results:
 result = ____

 # Start i1 and i2 at index 0, the start of list1 and list2:
 i1 = ____
 i2 = ____

 # Keeping moving up i1 and i2 until one reaches the end of its list:
 while i1 < len(____) and ____ < len(list2):
 # Add the smaller of the two current items to the result:
 if list1[____] < list2[____]:
 # Add list1's current item to the result:
 result.append(____[i1])
 # Increment i1:
 i1 += ____
 else:
 # Add list2's current item to the result:
 result.append(____[i2])
 # Increment i2:
 i2 += ____

 # If i1 is not at the end of list1, add the remaining items from list1:
 if i1 < len(____):
 for j in range(i1, len(list1)):
 result.append(____[j])
 # If i2 is not at the end of list2, add the remaining items from list2:
 if i2 < len(____):
 for j in range(i2, len(list2)):
 result.append(____[j])

 # Return the merged, sorted list:
 return result

The complete solution for this exercise is given in Appendix A and

https://invpy.com/mergetwolists.py. You can view each step of this program as it runs under a debugger at

https://invpy.com/mergetwolists-debug/.

Python Programming Exercises, Gently Explained

126

Further Reading

Merge sort uses this ―merge two sorted lists into a single sorted list‖ behavior as a step in its

algorithm. You can learn more about merge sort and other recursive algorithms from my book, ―The

Recursive Book of Recursion.‖ The full book is freely available under a Creative Commons license at

https://inventwithpython.com/recursion/.

127

E X E R C I S E # 4 1 : R O T 1 3 E N C R Y P T I O N

rot13('Hello, world!') → 'Uryyb, jbeyq!'
rot13('Uryyb, jbeyq!') → 'Hello, world!'

ROT 13 is a simple encryption cipher. The name ―ROT 13‖ is short for ―rotate 13.‖ It encrypts by

replacing letters with letters that appear 13 characters down the alphabet: A is replaced with N, B is

replaced with O, C is replaced with P, and so on. If this rotation of 13 letters goes passed the end of

the alphabet, it ―wraps around‖ the Z and continues from the start of the alphabet. Thus, X is

replaced with K, Y is replaced with L, Z is replaced with M, and so on. Non-letter characters are left

unencrypted.

The benefit of ROT 13 is that you can decrypt the encrypted text by running it through ROT 13

encryption again. This rotates the letter 26 times, returning us to the original letter. So ―Hello, world!‖

encrypts to ―Uryyb, jbeyq!‖ which in turn encrypts to ―Hello, world!‖ There is no decryption

algorithm; you decrypt encrypted text by encrypting it again. The ROT 13 algorithm isn’t secure for

real-world cryptography. But it can be used to obfuscate text to prevent spoiling joke punch lines or

puzzle solutions.

The following shows what each of the 26 letters encrypts to with ROT 13 once (from the top

row to the middle row) and twice (from the middle row to the bottom row.)

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
▼ ▼
N O P Q R S T U V W X Y Z A B C D E F G H I J K L M
▼ ▼
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Exercise Description

Write a rot13() function with a text parameter that returns the ROT 13 encrypted version of

text. Uppercase letters encrypt to uppercase letters and lowercase letters encrypt to lowercase letters.

For example, 'HELLO, world!' encrypts to 'URYYB, jbeyq!' and 'hello, WORLD!'

encrypts to 'uryyb, JBEYQ!'.

You may use the following Python functions and string methods as part of your solution: ord(),

chr(), isalpha(), islower(), and isupper().

These Python assert statements stop the program if their condition is False. Copy them to

Python Programming Exercises, Gently Explained

128

the bottom of your solution program. Your solution is correct if the following assert statements’

conditions are all True:

assert rot13('Hello, world!') == 'Uryyb, jbeyq!'
assert rot13('Uryyb, jbeyq!') == 'Hello, world!'
assert rot13(rot13('Hello, world!')) == 'Hello, world!'
assert rot13('abcdefghijklmnopqrstuvwxyz') == 'nopqrstuvwxyzabcdefghijklm'
assert rot13('ABCDEFGHIJKLMNOPQRSTUVWXYZ') == 'NOPQRSTUVWXYZABCDEFGHIJKLM'

Try to write a solution based on the information in this description. If you still have trouble

solving this exercise, read the Solution Design and Special Cases and Gotchas sections for

additional hints.

Prerequisite concepts: strings, ord(), chr(), for loops, Boolean operators, islower(),

isupper(), augmented assignment operators

Solution Design

Instead of hard-coding every letter and its encrypted form, we can rely on each letter’s Unicode

code point integer. Code points were discussed in Exercise #7, ―ASCII Table.‖ The ord() and

chr() functions discussed in Exercise #7, ―ASCII Table‖ can translate from a letter string to integer

and integer to letter string, respectively.

The function starts with an encryptedText variable set to an empty string that will store the

encrypted result as we encrypt each character. A for loop can loop over the text parameter to

encrypt each character. If this character isn’t a letter, it’s added to the end of encryptedText as-is

without encryption.

Otherwise, we can pass the letter to ord() to obtain its Unicode code point as an integer.

Uppercase letters A to Z have integers ranging from 65 up to and including 90. Lowercase letters a to

z have integers ranging from 97 up to and including 122. We need to reduce this by 26 to ―wrap

around‖ to the start of the alphabet.

For example, the letter 'S' has an integer 83 (because ord('S') returns 83) but adding 83 +
13 gives us 96, which is greater than the integer for Z (ord('Z') returns 90). In this case, we must

subtract 26: 96 - 26 gives us the encrypted integer 70, and chr(70) returns 'F'. This is how we

can determine that 'S' encrypts to 'F' in the ROT 13 cipher.

Note that while an uppercase 'Z' has the Unicode code point 90, the lowercase 'z' has the

Unicode code point 122.

Special Cases and Gotchas

While you want to add 13 to the Unicode code point integers of both uppercase and lowercase

letters, when you check if this addition results in a number larger than Z’s Unicode code point, you

must use the correct case of Z. Otherwise, your rot13() function may determine that the lowercase

'a' (with integer 97) is past uppercase 'Z' (with integer 90) because 97 is greater than 90. You

must compare lowercase rotated letters with 122 (the integer of lowercase 'z') and uppercase

rotated letters with 90 (the integer of uppercase 'Z').

All non-letter characters such as numbers, spaces, and punctuation marks are added to the

encrypted text unmodified. Be sure that your rot13() function doesn’t accidentally drop them from

the returned string.

Python Programming Exercises, Gently Explained

129

Now try to write a solution based on the information in the previous sections. If you still have

trouble solving this exercise, read the Solution Template section for additional hints.

Solution Template

Try to first write a solution from scratch. But if you have difficulty, you can use the following

partial program as a starting place. Copy the following code from https://invpy.com/rot13-template.py and

paste it into your code editor. Replace the underscores with code to make a working program:

def rot13(text):
 # Create an encryptedText variable to store the encrypted string:
 encryptedText = ____
 # Loop over each character in the text:
 for character in text:
 # If the character is not a letter, add it as-is to encryptedText:
 if not character.____():
 encryptedText += ____
 # Otherwise calculate the letter's "rotated 13" letter:
 else:
 rotatedLetterOrdinal = ____(character) + 13
 # If adding 13 pushes the letter past Z, subtract 26:
 if ____.islower() and rotatedLetterOrdinal > ____:
 rotatedLetterOrdinal -= ____
 if ____.isupper() and rotatedLetterOrdinal > ____:
 rotatedLetterOrdinal -= ____

 # Add the encrypted letter to encryptedText:
 encryptedText += ____(rotatedLetterOrdinal)

 # Return the encrypted text:
 return encryptedText

The complete solution for this exercise is given in Appendix A and https://invpy.com/rot13.py. You

can view each step of this program as it runs under a debugger at https://invpy.com/rot13-debug/.

Further Reading

If you are interested in writing Python programs for encryption algorithms and code breaking,

my book ―Cracking Codes with Python‖ is freely available under a Creative Commons license at

https://inventwithpython.com/cracking/.

130

E X E R C I S E # 4 2 : B U B B L E S O R T

bubbleSort([2, 0, 4, 1, 3]) → [0, 1, 2, 3, 4]

Bubble sort is often the first sorting algorithm taught to computer science students. While it is

too inefficient for use in real-world software, the algorithm is easy to understand. In this last exercise

of the book, we’ll implement this basic sorting algorithm.

Exercise Description

Write a bubbleSort() function with a list parameter named numbers. The function

rearranges the values in this list in-place. The function also returns the now-sorted list. There are

many sorting algorithms, but this exercise asks you to implement the bubble sort algorithm.

The objective of this exercise is to write a sorting algorithm, so avoid using Python’s sort()

method or sorted() function as that would defeat the purpose of the exercise.

These Python assert statements stop the program if their condition is False. Copy them to

the bottom of your solution program. Your solution is correct if the following assert statements’

conditions are all True:

assert bubbleSort([2, 0, 4, 1, 3]) == [0, 1, 2, 3, 4]
assert bubbleSort([2, 2, 2, 2]) == [2, 2, 2, 2]

Try to write a solution based on the information in this description. If you still have trouble

solving this exercise, read the Solution Design and Special Cases and Gotchas sections for

additional hints.

Prerequisite concepts: lists, for loops, range() with two arguments, nested loops, swapping

values

Solution Design

The bubble sort algorithm compares every pair of indexes and swaps their values so that the

larger value comes later in the list. As the algorithm runs, the larger numbers ―bubble up‖ towards the

end, hence the algorithm’s name. We’ll use variables named i and j to track the two indexes whose

values should be compared with each other. The pattern behind the movements of i and j are easier

to see when visually laid out, as in Figure 42-1 which uses a 5-item numbers list as an example:

Python Programming Exercises, Gently Explained

131

Figure 42-1: The pattern of i and j’s movement: j starts after i and moves to the right, and when it
reaches the end, i moves right once and j starts after i again.

Notice the similarity between the movement of i and j to the nested for loops in Project #26

―Handshakes.‖ As the algorithm runs, j starts after i and moves to the right, and when it reaches the

end, i moves right once and j starts after i again.

If you look at the overall range of i and j, you’ll see that i starts at index 0 and ends at the

second to last index. Meanwhile, j starts at the index after i and ends at the last index. This means

our nested for loops over the numbers list parameter would look like this:

for i in range(len(numbers) - 1):
 for j in range(i, len(numbers)):

Inside the inner loop, the numbers at indexes i and j are compared, and if the number at index

i is larger than the number at index j, they are swapped. Figure 42-2 shows the state of a list [8, 2,
9, 6, 3] as the bubble sort algorithm swaps the two numbers after being compared at each step.

Python Programming Exercises, Gently Explained

132

Figure 42-2: The steps of the bubble sort algorithm as it sorts [8, 2, 9, 6, 3].

At the end of these two nested for loops, the numbers in the list will have been swapped into

sorted order.

Special Cases and Gotchas

Sorting algorithms are an excellent introduction to the computer science topic of data structures

and algorithms. And bubble sort is a good introduction to sorting algorithms. But the chief weakness of

bubble sort is that it’s incredibly inefficient. While it can quickly sort lists of a few dozen or few

hundred values, it becomes infeasible for sorting lists of thousands or millions of values. For this

reason, real-world applications never use bubble sort.

Now try to write a solution based on the information in the previous sections. If you still have

trouble solving this exercise, read the Solution Template section for additional hints.

Solution Template

Try to first write a solution from scratch. But if you have difficulty, you can use the following

partial program as a starting place. Copy the following code from https://invpy.com/bubblesort-template.py

and paste it into your code editor. Replace the underscores with code to make a working program:

def bubbleSort(numbers):
 # The outer loop loops i over all but the last number:
 for i in range(len(____) - ____):
 # The inner loop loops j starting at i to the last number:
 for j in range(____, len(____)):
 # If the number at i is greater than the number at j, swap them:
 if numbers[i] ____ numbers[j]:
 numbers[i], numbers[j] = numbers[____], numbers[____]
 # Return the now-sorted list:
 return numbers

Python Programming Exercises, Gently Explained

133

The complete solution for this exercise is given in Appendix A and https://invpy.com/bubblesort.py.

You can view each step of this program as it runs under a debugger at https://invpy.com/bubblesort-

debug/.

Further Reading

If you want to see what a first-year computer science student would study in a data structures and

algorithms course, Coursera has a free online course called ―Algorithmic Toolbox‖ at

https://www.coursera.org/learn/algorithmic-toolbox.

134

A P P E N D I X A : S O L U T I O N S

As long as your programs pass all the assert statements or match the output given in the

exercise, they don’t have to be identical to my solutions. There’s always several ways to write code.

This appendix contains the complete solutions that were partially given in the Solution Template

sections of each exercise.

I highly recommend attempting to solve these exercises on your own instead of immediately

jumping to these solutions, even if you have to struggle with them for a while. More important than

the knowledge of these solutions is the practice that attempting to solve them gives you. However, if

you feel stuck and cannot move on, reading the solution program for an exercise can give you insights

for how to solve the other exercises in this book.

Exercise #1: Hello, World!

Print "Hello, world!" on the screen:
print('Hello, world!')
Ask the user for their name:
print('What is your name?')
Get the user's name from their keyboard input:
name = input()
Greet the user by their name:
print('Hello, ' + name)

Exercise #2: Temperature Conversion

def convertToFahrenheit(degreesCelsius):
 # Calculate and return the degrees Fahrenheit:
 return degreesCelsius * (9 / 5) + 32

def convertToCelsius(degreesFahrenheit):
 # Calculate and return the degrees Celsius:
 return (degreesFahrenheit - 32) * (5 / 9)

Exercise #3: Odd & Even

def isOdd(number):
 # Return whether number mod 2 is 1:
 return number % 2 == 1

def isEven(number):
 # Return whether number mod 2 is 0:
 return number % 2 == 0

Python Programming Exercises, Gently Explained

135

Exercise #4: Area & Volume

def area(length, width):
 # Return the product of the length and width:
 return length * width

def perimeter(length, width):
 # Return the sum of the length twice and the width twice:
 return length * 2 + width * 2

def volume(length, width, height):
 # Return the product of the length, width, and height:
 return length * width * height

def surfaceArea(length, width, height):
 # Return the sum of the area of each of the six sides:
 return ((length * width) + (length * height) + (width * height)) * 2

Exercise #5: Fizz Buzz

def fizzBuzz(upTo):
 # Loop from 1 up to (and including) the upTo parameter:
 for number in range(1, upTo + 1):
 # If the loop number is divisible by 3 and 5, print 'FizzBuzz':
 if number % 3 == 0 and number % 5 == 0:
 print('FizzBuzz', end=' ')
 # Otherwise the loop number is divisible by only 3, print 'Fizz':
 elif number % 3 == 0:
 print('Fizz', end=' ')
 # Otherwise the loop number is divisible by only 5, print 'Buzz':
 elif number % 5 == 0:
 print('Buzz', end=' ')
 # Otherwise, print the loop number:
 else:
 print(number, end=' ')

Exercise #6: Ordinal Suffix

def ordinalSuffix(number):
 numberStr = str(number)

 # 11, 12, and 13 have the suffix th:
 if numberStr[-2:] in ('11', '12', '13'):
 return numberStr + 'th'
 # Numbers that end with 1 have the suffix st:
 if numberStr[-1] == '1':
 return numberStr + 'st'
 # Numbers that end with 2 have the suffix nd:
 if numberStr[-1] == '2':
 return numberStr + 'nd'
 # Numbers that end with 3 have the suffix rd:
 if numberStr[-1] == '3':
 return numberStr + 'rd'
 # All other numbers end with th:
 return numberStr + 'th'

Python Programming Exercises, Gently Explained

136

Alternate Solution:

def ordinalSuffix(number):
 # 11, 12, and 13 have the suffix th:
 if number % 100 in (11, 12, 13):
 return str(number) + 'th'
 # Numbers that end with 1 have the suffix st:
 if number % 10 == 1:
 return str(number) + 'st'
 # Numbers that end with 2 have the suffix nd:
 if number % 10 == 2:
 return str(number) + 'nd'
 # Numbers that end with 3 have the suffix rd:
 if number % 10 == 3:
 return str(number) + 'rd'
 # All other numbers end with th:
 return str(number) + 'th'

Exercise #7: ASCII Table

def printASCIITable():
 # Loop over integers 32 up to and including 126:
 for i in range(32, 127):
 # Print the integer and its ASCII text character:
 print(i, chr(i))
printASCIITable()

Exercise #8: Read Write File

def writeToFile(filename, text):
 # Open the file in write mode:
 with open(filename, 'w') as fileObj:
 # Write the text to the file:
 fileObj.write(text)

def appendToFile(filename, text):
 # Open the file in append mode:
 with open(filename, 'a') as fileObj:
 # Write the text to the end of the file:
 fileObj.write(text)

def readFromFile(filename):
 # Open the file in read mode:
 with open(filename) as fileObj:
 # Read all of the text in the file and return it as a string:
 return fileObj.read()

Exercise #9: Chess Square Color

def getChessSquareColor(column, row):
 # If the column and row is out of bounds, return a blank string:
 if column < 1 or column > 8 or row < 1 or row > 8:
 return ''

Python Programming Exercises, Gently Explained

137

 # If the even/oddness of the column and row match, return 'white':
 if column % 2 == row % 2:
 return 'white'
 # If they don't match, then return 'black':
 else:
 return 'black'

Here is a second solution:

def getChessSquareColor(column, row):
 # If the column and row is out of bounds, return a blank string:
 if column < 1 or column > 8 or row < 1 or row > 8:
 return ''

 # If the even/oddness of the column and row match, return 'white':
 if not (column % 2 ^ row % 2):
 return 'white'
 # If they don't match, then return 'black':
 else:
 return 'black'

Exercise #10: Find and Replace

def findAndReplace(text, oldText, newText):
 replacedText = ''
 i = 0
 while i < len(text):
 # If index i in text is the start of the oldText pattern, add
 # the replacement text:
 if text[i:i + len(oldText)] == oldText:
 # Add the replacement text:
 replacedText += newText
 # Increment i by the length of oldText:
 i += len(oldText)
 # Otherwise, add the characters at text[i] and increment i by 1:
 else:
 replacedText += text[i]
 i += 1
 return replacedText

Exercise #11: Hours, Minutes, Seconds

def getHoursMinutesSeconds(totalSeconds):
 # If totalSeconds is 0, just return '0s':
 if totalSeconds == 0:
 return '0s'

 # Set hours to 0, then add an hour for every 3600 seconds removed from
 # totalSeconds until totalSeconds is less than 3600:
 hours = 0
 while totalSeconds >= 3600:
 hours += 1
 totalSeconds -= 3600

 # Set minutes to 0, then add a minute for every 60 seconds removed from

Python Programming Exercises, Gently Explained

138

 # totalSeconds until totalSeconds is less than 60:
 minutes = 0
 while totalSeconds >= 60:
 minutes += 1
 totalSeconds -= 60

 # Set seconds to the remaining totalSeconds value:
 seconds = totalSeconds

 # Create an hms list that contains the string hour/minute/second amounts:
 hms = []
 # If there are one or more hours, add the amount with an 'h' suffix:
 if hours > 0:
 hms.append(str(hours) + 'h')
 # If there are one or more minutes, add the amount with an 'm' suffix:
 if minutes > 0:
 hms.append(str(minutes) + 'm')
 # If there are one or more seconds, add the amount with an 's' suffix:
 if seconds > 0:
 hms.append(str(seconds) + 's')

 # Join the hour/minute/second strings with a space in between them:
 return ' '.join(hms)

Exercise #12: Smallest & Biggest

def getSmallest(numbers):
 # If the numbers list is empty, return None:
 if len(numbers) == 0:
 return None

 # Create a variable that tracks the smallest value so far, and start
 # it off a the first value in the list:
 smallest = numbers[0]
 # Loop over each number in the numbers list:
 for number in numbers:
 # If the number is smaller than the current smallest value, make
 # it the new smallest value:
 if number < smallest:
 smallest = number
 # Return the smallest value found:
 return smallest

Exercise #13: Sum & Product

def calculateSum(numbers):
 # Start the sum result at 0:
 result = 0
 # Loop over all the numbers in the numbers parameter, and add them
 # to the running sum result:
 for number in numbers:
 result += number
 # Return the final sum result:
 return result

Python Programming Exercises, Gently Explained

139

def calculateProduct(numbers):
 # Start the product result at 1:
 result = 1
 # Loop over all the numbers in the numbers parameter, and multiply
 # them by the running product result:
 for number in numbers:
 result *= number
 # Return the final product result:
 return result

Exercise #14: Average

def average(numbers):
 # Special case: If the numbers list is empty, return None:
 if len(numbers) == 0:
 return None

 # Start the total at 0:
 total = 0

 # Loop over each number in numbers:
 for number in numbers:
 # Add the number to the total:
 total += number

 # Get the average by dividing the total by how many numbers there are:
 return total / len(numbers)

Exercise #15: Median

def median(numbers):
 # Special case: If the numbers list is empty, return None:
 if len(numbers) == 0:
 return None

 # Sort the numbers list:
 numbers.sort()

 # Get the index of the middle number:
 middleIndex = len(numbers) // 2

 # If the numbers list has an even length, return the average of the
 # middle two numbers:
 if len(numbers) % 2 == 0:
 return (numbers[middleIndex] + numbers[middleIndex - 1]) / 2
 # If the numbers list has an odd length, return the middlemost number:
 else:
 return numbers[middleIndex]

Exercise #16: Mode

def mode(numbers):
 # Special case: If the numbers list is empty, return None:
 if len(numbers) == 0:

Python Programming Exercises, Gently Explained

140

 return None

 # Dictionary with keys of numbers and values of how often they appear:
 numberCount = {}

 # Track the most frequent number and how often it appears:
 mostFreqNumber = None
 mostFreqNumberCount = 0

 # Loop through all the numbers, counting how often they appear:
 for number in numbers:
 # If the number hasn't appeared before, set it's count to 0.
 if number not in numberCount:
 numberCount[number] = 0
 # Increment the number's count:
 numberCount[number] += 1
 # If this is more frequent than the most frequent number, it
 # becomes the new most frequent number:
 if numberCount[number] > mostFreqNumberCount:
 mostFreqNumber = number
 mostFreqNumberCount = numberCount[number]
 # The function returns the most frequent number:
 return mostFreqNumber

Exercise #17: Dice Roll

Import the random module for its randint() function.
import random

def rollDice(numberOfDice):
 # Start the sum total at 0:
 total = 0
 # Run a loop for each die that needs to be rolled:
 for i in range(numberOfDice):
 # Add the amount from one 6-sided dice roll to the total:
 total += random.randint(1, 6)
 # Return the dice roll total:
 return total

Exercise #18: Buy 8 Get 1 Free

def getCostOfCoffee(numberOfCoffees, pricePerCoffee):
 # Track the total price:
 totalPrice = 0
 # Track how many coffees we have until we get a free one:
 cupsUntilFreeCoffee = 8

 # Loop until the number of coffees to buy reaches 0:
 while numberOfCoffees > 0:
 # Decrement the number of coffees left to buy:
 numberOfCoffees -= 1

 # If this cup of coffee is free, reset the number to buy until
 # a free cup back to 8:
 if cupsUntilFreeCoffee == 0:

Python Programming Exercises, Gently Explained

141

 cupsUntilFreeCoffee = 8
 # Otherwise, pay for a cup of coffee:
 else:
 # Increase the total price:
 totalPrice += pricePerCoffee
 # Decrement the coffees left until we get a free coffee:
 cupsUntilFreeCoffee -= 1

 # Return the total price:
 return totalPrice

Alternate Solution:

def getCostOfCoffee(numberOfCoffees, pricePerCoffee):
 # Calculate the number of free coffees we get in this order:
 numberOfFreeCoffees = numberOfCoffees // 9

 # Calculate the number of coffees we will have to pay for in this order:
 numberOfPaidCoffees = numberOfCoffees - numberOfFreeCoffees

 # Calculate and return the price:
 return numberOfPaidCoffees * pricePerCoffee

Exercise #19: Password Generator

Import the random module for its randint() function.
import random

Create string constants that for each type of character:
LOWER_LETTERS = 'abcdefghijklmnopqrstuvwxyz'
UPPER_LETTERS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
NUMBERS = '1234567890'
SPECIAL = '~!@#$%^&*()_+'

Create a string with all of these strings combined:
ALL_CHARS = LOWER_LETTERS + UPPER_LETTERS + NUMBERS + SPECIAL

def generatePassword(length):
 # 12 is the minimum length for passwords:
 if length < 12:
 length = 12

 # Create a password variable that starts as an empty list:
 password = []
 # Add a random character from the lowercase, uppercase, digits, and
 # punctuation character strings:
 password.append(LOWER_LETTERS[random.randint(0, 25)])
 password.append(UPPER_LETTERS[random.randint(0, 25)])
 password.append(NUMBERS[random.randint(0, 9)])
 password.append(SPECIAL[random.randint(0, 12)])

 # Keep adding random characters from the combined string until the
 # password meets the length:
 while len(password) < length:
 password.append(ALL_CHARS[random.randint(0, 74)])

 # Randomly shuffle the password list:

Python Programming Exercises, Gently Explained

142

 random.shuffle(password)

 # Join all the strings in the password list into one string to return:
 return ''.join(password)

Exercise #20: Leap Year

def isLeapYear(year):
 # Years divisible by 400 are leap years:
 if year % 400 == 0:
 return True
 # Otherwise, years divisible by 100 are not leap years:
 elif year % 100 == 0:
 return False
 # Otherwise, years divisible by 4 are leap years:
 elif year % 4 == 0:
 return True
 # Otherwise, every other year is not a leap year:
 else:
 return False

Exercise #21: Validate Date

Import the leapyear module for its isLeapYear() function:
import leapyear

def isValidDate(year, month, day):
 # If month is outside the bounds of 1 to 12, return False:
 if not (1 <= month <= 12):
 return False

 # If the year is a leap year and the date is Feb 29th, it is valid:
 if leapyear.isLeapYear(year) and month == 2 and day == 29:
 return True

 # Check for invalid dates in 31-day months:
 if month in (1, 3, 5, 7, 8, 10, 12) and not (1 <= day <= 31):
 return False
 # Check for invalid dates in 30-day months:
 elif month in (4, 6, 9, 11) and not (1 <= day <= 30):
 return False
 # Check for invalid dates in February:
 elif month == 2 and not (1 <= day <= 28):
 return False

 # Date passes all checks and is valid, so return True:
 return True

Exercise #22: Rock, Paper, Scissors

def rpsWinner(move1, move2):
 # Check all six possible combinations with a winner and return it:
 if move1 == 'rock' and move2 == 'paper':
 return 'player two'

Python Programming Exercises, Gently Explained

143

 elif move1 == 'rock' and move2 == 'scissors':
 return 'player one'
 elif move1 == 'paper' and move2 == 'scissors':
 return 'player two'
 elif move1 == 'paper' and move2 == 'rock':
 return 'player one'
 elif move1 == 'scissors' and move2 == 'rock':
 return 'player two'
 elif move1 == 'scissors' and move2 == 'paper':
 return 'player one'
 # For all other combinations, it is a tie:
 else:
 return 'tie'

Exercise #23: 99 Bottles of Beer

Loop from 99 to 2, displaying the lyrics to each stanza.
for numberOfBottles in range(99, 1, -1):
 print(numberOfBottles, 'bottles of beer on the wall,')
 print(numberOfBottles, 'bottles of beer,')
 print('Take one down,')
 print('Pass it around,')

 # If there is only one, print "bottle" instead of "bottles".
 if (numberOfBottles - 1) == 1:
 print('1 bottle of beer on the wall,')
 else:
 print(numberOfBottles - 1, ' bottles of beer on the wall,')

The last stanza has singular "bottle" and a different final line:
print('1 bottle of beer on the wall,')
print('1 bottle of beer,')
print('Take one down,')
print('Pass it around,')
print('No more bottles of beer on the wall!')

Exercise #24: Every 15 Minutes

Loop over am and pm:
for meridiem in ['am', 'pm']:
 # Loop over every hour:
 for hour in ['12', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11']:
 # Loop over every 15 minutes:
 for minutes in ['00', '15', '30', '45']:
 # Print the time:
 print(hour + ':' + minutes + ' ' + meridiem)

Exercise #25: Multiplication Table

Print the heading of each column:
print(' | 1 2 3 4 5 6 7 8 9 10')
print('--+------------------------------')

Loop over all numbers from 1 to 10:

Python Programming Exercises, Gently Explained

144

for column in range(1, 11):
 # Print the number label on the right side:
 print(str(column).rjust(2) + '|', end='')

 # Loop over all numbers from 1 to 10:
 for row in range(1, 11):
 # Print the product, padded to two digits, followed by a space:
 print(str(column * row).rjust(2) + ' ', end='')
 # After the loop, print a newline to end the row:
 print()

Exercise #26: Handshakes

def printHandshakes(people):
 # The total number of handshakes starts at 0:
 numberOfHandshakes = 0
 # Loop over every index in the people list except the last:
 for i in range(len(people) - 1):
 # Loop over every index in the people list after index i:
 for j in range(i + 1, len(people)):
 # Print a handshake between the people at index i and j:
 print(people[i], 'shakes hands with', people[j])
 # Increment the total number of handshakes:
 numberOfHandshakes += 1
 # Return the total number of handshakes:
 return numberOfHandshakes

Exercise #27: Rectangle Drawing

def drawRectangle(width, height):
 # Special case: If width or height is less than 1, draw nothing:
 if width < 1 or height < 1:
 return

 # Loop over each row:
 for row in range(height):
 # Loop over each column in this row:
 for column in range(width):
 # Print a hashtag:
 print('#', end='')
 # At the end of the row, print a newline:
 print()

Exercise #28: Border Drawing

def drawBorder(width, height):
 # Special case: If the width or height is less than two, draw nothing:
 if width < 2 or height < 2:
 return

 # Print the top row:
 print('+' + ('-' * (width - 2)) + '+')

 # Loop for each row (except the top and bottom):

Python Programming Exercises, Gently Explained

145

 for i in range(height - 2):
 # Print the sides:
 print('|' + (' ' * (width - 2)) + '|')

 # Print the bottom row:
 print('+' + ('-' * (width - 2)) + '+')

Exercise #29: Pyramid Drawing

def drawPyramid(height):
 # Loop over each row from 0 up to height:
 for rowNumber in range(height):
 # Create a string of spaces for the left side of the pyramid:
 leftSideSpaces = ' ' * (height - (rowNumber + 1))
 # Create the string of hashtags for this row of the pyramid:
 pyramidRow = '#' * (rowNumber * 2 + 1)
 # Print the left side spaces and the row of the pyramid:
 print(leftSideSpaces + pyramidRow)

Exercise #30: 3D Box Drawing

def drawBox(size):
 # Special case: Draw nothing if size is less than 1:
 if size < 1:
 return

 # Draw back line on top surface:
 print(' ' * (size + 1) + '+' + '-' * (size * 2) + '+')

 # Draw top surface:
 for i in range(size):
 print(' ' * (size - i) + '/' + ' ' * (size * 2) + '/' + ' ' * i + '|')

 # Draw top line on top surface:
 print('+' + '-' * (size * 2) + '+' + ' ' * size + '+')

 # Draw front surface:
 for i in range(size - 1, -1, -1):
 print('|' + ' ' * (size * 2) + '|' + ' ' * i + '/')

 # Draw bottom lie on front surface:
 print('+' + '-' * (size * 2) + '+')

In a loop, call drawBox() with arguments 1 to 5:
for i in range(1, 6):
 drawBox(i)

Exercise #31: Convert Integers to Strings

def convertIntToStr(integerNum):
 # Special case: Check if integerNum is 0, and return '0' if so:
 if integerNum == 0:
 return '0'

Python Programming Exercises, Gently Explained

146

 # This dictionary maps single integer digits to string digits:
 DIGITS_INT_TO_STR = {0: '0', 1: '1', 2: '2', 3: '3', 4: '4',
 5: '5', 6: '6', 7: '7', 8: '8', 9: '9'}

 # Make a note whether the number is negative or not, and make
 # integerNum positive for the rest of the function's code:
 if integerNum < 0:
 isNegative = True
 integerNum = -integerNum
 else:
 isNegative = False

 # stringNum holds the converted string, and starts off blank:
 stringNum = ''

 # Keeping looping while integerNum is greater than zero:
 while integerNum > 0:
 # Mod the integerNum by 10 to get the digit in the ones place:
 onesPlaceDigit = integerNum % 10
 # Put the corresponding string digit at the front of stringNum:
 stringNum = DIGITS_INT_TO_STR[onesPlaceDigit] + stringNum
 # Divide integerNum by ten to remove one entire digit place:
 integerNum //= 10

 # If the number was originally negative, add a minus sign:
 if isNegative:
 return '-' + stringNum
 else:
 return stringNum

Exercise #32: Convert Strings to Integers

def convertStrToInt(stringNum):
 # This dictionary maps string digits to single integer digits:
 DIGITS_STR_TO_INT = {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4,
 '5': 5, '6': 6, '7': 7, '8': 8, '9': 9}

 # Make a note whether the number is negative or not, and make
 # integerNum positive for the rest of the function's code:
 if stringNum[0] == '-':
 isNegative = True
 stringNum = stringNum[1:]
 else:
 isNegative = False

 # integerNum holds the converted integer, and starts off at 0:
 integerNum = 0

 # Loop over the digits in the string from left to right:
 for i in range(len(stringNum)):
 # Get the integer digit from the string digit:
 digit = DIGITS_STR_TO_INT[stringNum[i]]
 # Add this to the integer number:
 integerNum = (integerNum * 10) + digit

 # If the number was originally negative, make the integer

Python Programming Exercises, Gently Explained

147

 # negative before returning it:
 if isNegative:
 return -integerNum
 else:
 return integerNum

Exercise #33: Comma-Formatted Numbers

def commaFormat(number):
 # Convert the number to a string:
 number = str(number)

 # Remember the fractional part and remove it from the number, if any:
 if '.' in number:
 fractionalPart = number[number.index('.'):]
 number = number[:number.index('.')]
 else:
 fractionalPart = ''

 # Create a variable to hold triplets of digits and the
 # comma-formatted string as it is built:
 triplet = ''
 commaNumber = ''

 # Loop over the digits starting on the right side and going left:
 for i in range(len(number) - 1, -1, -1):
 # Add the digits to the triplet variable:
 triplet = number[i] + triplet
 # When the triplet variable has three digits, add it with a
 # comma to the comma-formatted string:
 if len(triplet) == 3:
 commaNumber = triplet + ',' + commaNumber
 # Reset the triplet variable back to a blank string:
 triplet = ''

 # If the triplet has any digits left over, add it with a comma
 # to the comma-formatted string:
 if triplet != '':
 commaNumber = triplet + ',' + commaNumber

 # Return the comma-formatted string:
 return commaNumber[:-1] + fractionalPart

Exercise #34: Uppercase Letters

Map the lowercase letters to uppercase letters.
LOWER_TO_UPPER = {'a': 'A', 'b': 'B', 'c': 'C', 'd': 'D', 'e': 'E', 'f': 'F', 'g':
'G', 'h': 'H', 'i': 'I', 'j': 'J', 'k': 'K', 'l': 'L', 'm': 'M', 'n': 'N', 'o': 'O',
'p': 'P', 'q': 'Q', 'r': 'R', 's': 'S', 't': 'T', 'u': 'U', 'v': 'V', 'w': 'W', 'x':
'X', 'y': 'Y', 'z': 'Z'}

def getUppercase(text):
 # Create a new variable that starts as a blank string and will
 # hold the uppercase form of text:
 uppercaseText = ''

Python Programming Exercises, Gently Explained

148

 # Loop over all the characters in text, adding non-lowercase
 # characters to our new string:
 for character in text:
 if character in LOWER_TO_UPPER:
 # Append the uppercase form to the new string:
 uppercaseText += LOWER_TO_UPPER[character]
 else:
 uppercaseText += character

 # Return the uppercase string:
 return uppercaseText

Exercise #35: Title Case

def getTitleCase(text):
 # Create a titledText variable to store the titlecase text:
 titledText = ''
 # Loop over every index in text:
 for i in range(len(text)):
 # The character at the start of text should be uppercase:
 if i == 0:
 titledText += text[i].upper()
 # If the character is a letter and the previous character is
 # not a letter, make it uppercase:
 elif text[i].isalpha() and not text[i - 1].isalpha():
 titledText += text[i].upper()
 # Otherwise, make it lowercase:
 else:
 titledText += text[i].lower()
 # Return the titled cased string:
 return titledText

Exercise #36: Reverse String

def reverseString(text):
 # Convert the text string into a list of character strings:
 text = list(text)
 # Loop over the first half of indexes in the list:
 for i in range(len(text) // 2):
 # Swap the values of i and it's mirror index in the second
 # half of the list:
 mirrorIndex = len(text) - 1 - i
 text[i], text[mirrorIndex] = text[mirrorIndex], text[i]
 # Join the list of strings into a single string and return it:
 return ''.join(text)

Exercise #37: Change Maker

def makeChange(amount):
 # Create a dictionary to keep track of how many of each coin:
 change = {}

 # If the amount is enough to add quarters, add them:
 if amount >= 25:

Python Programming Exercises, Gently Explained

149

 change['quarters'] = amount // 25
 # Reduce the amount by the value of the quarters added:
 amount = amount % 25
 # If the amount is enough to add dimes, add them:
 if amount >= 10:
 change['dimes'] = amount // 10
 # Reduce the amount by the value of the dimes added:
 amount = amount % 10
 # If the amount is enough to add nickels, add them:
 if amount >= 5:
 change['nickels'] = amount // 5
 # Reduce the amount by the value of the nickels added:
 amount = amount % 5
 # If the amount is enough to add pennies, add them:
 if amount >= 1:
 change['pennies'] = amount

 return change

Exercise #38: Random Shuffle

Import the random module for its randint() function.
import random

def shuffle(values):
 # Loop over the range of indexes from 0 up to the length of the list:
 for i in range(len(values)):
 # Randomly pick an index to swap with:
 swapIndex = random.randint(0, len(values) - 1)
 # Swap the values between the two indexes:
 values[i], values[swapIndex] = values[swapIndex], values[i]

Exercise #39: Collatz Sequence

def collatz(startingNumber):
 # If the starting number is 0 or negative, return an empty list:
 if startingNumber < 1:
 return []

 # Create a list to hold the sequence, beginning with the starting number:
 sequence = [startingNumber]
 num = startingNumber
 # Keep looping until the current number is 1:
 while num != 1:
 # If odd, the next number is 3 times the current number plus 1:
 if num % 2 == 1:
 num = 3 * num + 1
 # If even, the next number is half the current number:
 else:
 num = num // 2
 # Record the number in the sequence list:
 sequence.append(num)

 # Return the sequence of numbers:
 return sequence

Python Programming Exercises, Gently Explained

150

Exercise #40: Merging Two Sorted Lists

def mergeTwoLists(list1, list2):
 # Create an empty list to hold the final sorted results:
 result = []

 # Start i1 and i2 at index 0, the start of list1 and list2:
 i1 = 0
 i2 = 0

 # Keeping moving up i1 and i2 until one reaches the end of its list:
 while i1 < len(list1) and i2 < len(list2):
 # Add the smaller of the two current items to the result:
 if list1[i1] < list2[i2]:
 # Add list1's current item to the result:
 result.append(list1[i1])
 # Increment i1:
 i1 += 1
 else:
 # Add list2's current item to the result:
 result.append(list2[i2])
 # Increment i2:
 i2 += 1

 # If i1 is not at the end of list1, add the remaining items from list1:
 if i1 < len(list1):
 for j in range(i1, len(list1)):
 result.append(list1[j])
 # If i2 is not at the end of list2, add the remaining items from list2:
 if i2 < len(list2):
 for j in range(i2, len(list2)):
 result.append(list2[j])

 # Return the merged, sorted list:
 return result

Exercise #41: Rot 13 Encryption

def rot13(text):
 # Create an encryptedText variable to store the encrypted string:
 encryptedText = ''
 # Loop over each character in the text:
 for character in text:
 # If the character is not a letter, add it as-is to encryptedText:
 if not character.isalpha():
 encryptedText += character
 # Otherwise calculate the letter's "rotated 13" letter:
 else:
 rotatedLetterOrdinal = ord(character) + 13
 # If adding 13 pushes the letter past Z, subtract 26:
 if character.islower() and rotatedLetterOrdinal > 122:
 rotatedLetterOrdinal -= 26
 if character.isupper() and rotatedLetterOrdinal > 90:
 rotatedLetterOrdinal -= 26

 # Add the encrypted letter to encryptedText:

Python Programming Exercises, Gently Explained

151

 encryptedText += chr(rotatedLetterOrdinal)

 # Return the encrypted text:
 return encryptedText

Exercise #42: Bubble Sort

def bubbleSort(numbers):
 # The outer loop loops i over all but the last number:
 for i in range(len(numbers) - 1):
 # The inner loop loops j starting at i to the last number:
 for j in range(i, len(numbers)):
 # If the number at i is greater than the number at j, swap them:
 if numbers[i] > numbers[j]:
 numbers[i], numbers[j] = numbers[j], numbers[i]
 # Return the now-sorted list:
 return numbers

152

A B O U T T H E A U T H O R

Al Sweigart is a software developer, fellow of the Python Software Foundation, and author of

several programming books with No Starch Press, including the worldwide bestseller Automate the

Boring Stuff with Python. His last name rhymes with ―why dirt.‖ His Creative Commons licensed

works are available at https://www.inventwithpython.com. His cat Zophie weighs 10 pounds.

al@inventwithpython.com

https://alsweigart.com

https://twitter.com/AlSweigart

https://github.com/asweigart

https://www.youtube.com/user/Albert10110

https://www.patreon.com/AlSweigart

Black Lives Matter

Trans Rights Are Human Rights

