深入剖析 Java HashMap 中的红黑树
在 Java 8 之前,HashMap
采用数组加链表的方式来处理哈希冲突。然而,当链表长度过长时,查找效率会显著下降。为了解决这一问题,Java 8 对 HashMap
进行了优化:当链表长度超过阈值(默认为 8)且数组长度大于等于 64 时,链表会转换为红黑树,以提高查找、插入和删除的效率。
红黑树概述
红黑树是一种自平衡的二叉查找树,具有以下特性:
- 节点颜色:每个节点要么是红色,要么是黑色。
- 根节点:根节点是黑色。
- 叶子节点:每个叶子节点(NIL)是黑色。
- 红色节点限制:每个红色节点的两个子节点一定都是黑色。
- 黑色节点平衡:从任一节点到其每个叶子节点的路径都包含数量相同的黑色节点。
这些特性确保了红黑树的平衡性,使其在最坏情况下的查找、插入和删除操作的时间复杂度维持在 O(log n)。
HashMap 中红黑树的引入
在 Java 8 中,HashMap
的底层结构在发生哈希冲突时,首先将冲突的元素以链表形式存储。当链表长度超过阈值(TREEIFY_THRESHOLD
,默认为 8)且数组长度大于等于 64 时,链表会转换为红黑树,以提高操作效率。相应地,当红黑树的节点数量减少到一定程度(UNTREEIFY_THRESHOLD
,默认为 6)时,红黑树会退化为链表结构。
需要注意的是,在进行树化操作时,HashMap
会先检查数组的长度是否小于 64。如果小于,则优先进行扩容而不是树化。这是因为在较小的数组中,冲突的概率更高,通过扩容可以有效减少冲突的发生,从而避免不必要的树化操作。
红黑树的优缺点
优点:
-
自平衡性:红黑树通过严格的平衡条件,确保了树的高度不会过高,从而保证了查找、插入和删除操作的时间复杂度为 O(log n)。
-
性能稳定:在最坏情况下,红黑树的操作效率仍然保持在对数级别,避免了普通二叉查找树在极端情况下退化为链表的情况。
缺点:
-
实现复杂:红黑树的插入和删除操作需要通过旋转和重新着色来维护平衡,这使得其实现相对复杂。
-
空间开销:相比于链表,红黑树的每个节点需要存储额外的颜色信息和指向父节点的引用,这增加了空间开销。
示例:链表转换为红黑树
以下是一个简单的示例,演示当 HashMap
中某个桶的链表长度超过阈值时,如何转换为红黑树:
import java.util.HashMap;
import java.util.Map;
public class HashMapTreeifyExample {
public static void main(String[] args) {
Map<Integer, String> map = new HashMap<>();
// 插入元素,确保它们的哈希值相同,导致哈希冲突
for (int i = 0; i < 12; i++) {
map.put(i * 16, "Value" + i);
}
// 输出 HashMap 的内容
map.forEach((key, value) -> System.out.println(key + ": " + value));
}
}