【DeepSeek】-- 常用润色指令

DeepSeek 常用润色指令合集

一、文章扩写

指令:请在不改变原文意思的基础上,对以下文章进行扩写。
要求如下:
1.围绕文章主题,供更丰富的信息和观点。
2.引人相关案例或数据支持文中论点,增强说服力。
3.结构清晰、逻辑连贯,易于读者理解。

二、文章缩写

指令:请在不改变原文意思的基础上,对以下文章进行精简。
要求如下:
1.围绕文章主题,精减与主题不相关的内容。
2.确保与原文结构逻辑一致,言简意赅。

三、文章仿写

指令:请根据以下要求仿写以下文章。
仿写样本:【xxx】
仿写主题:【xxx】
要求如下:
1.请仔细阅读并分析原文的风格、结构和语言特征并总结,与我达成共识。
2.达成共识后,在原文的基础上重新仿写一篇文章,以 XXX 为主题。
3.积极运用原文的风格、结构和语言特征。

四、改善用词

指令:请仔细阅读文章,改善文章中的用词,以使文字描述更加准确、清晰和生动。
PS:与AI对话时,输入"改善用词”,通过选择更恰当的词语,可以更好的传达读者的意图。


五、替换垃圾词语

指令:请仔细阅读文章,将文章中的一些口语化或者过于简单的词语或语句替换成更加正式或专业的词汇,使得文章更为严谨。
PS:与AI对话时,输人“替换文章中的垃圾词语”,它会识别和提供一些不太被认为是专业的短语或词汇的更好的替代方案。

六、修饰形容词和副词

指令:请通过对文章添加具体的描述语或者使用更精准的词汇来增强形容词和副词的表达力。
PS:与AI对话时,输入“修饰形容词和副词”,帮助=形容词和副词的修饰,使其更加生活,有血有肉。
 

### DeepSeek-R1工作原理详解 DeepSeek-R1融合了强化学习和监督学习两种方法来提升模型性能[^2]。具体而言,在训练阶段,该模型利用大量标注数据集进行有监督的学习过程,从而掌握特定任务下的输入输出映射关系;与此同时,为了增强泛化能力以及处理未见过的新颖情况,还引入了基于奖励机制的无监督探索策略。 #### 数据预处理与特征提取 当接收到原始输入时,系统会先对其进行必要的清洗、转换操作,并从中抽取有用的结构化信息作为后续计算的基础。这一部分通常涉及自然语言理解技术,能够解析文本语义并转化为向量表示形式以便于机器识别和运算[^1]。 #### 多模态感知模块 考虑到现实世界中的信息往往是单一维度存在的,因此DeepSeek-R1设计了一个多感官接收器用来捕捉来自同渠道的数据流——无论是视觉图像还是声音片段都能被有效整合进来参与决策制定流程。这使得模型具备更强的情境适应性和表达力。 #### 强化学习组件 对于那些难以通过固定模式预测的任务场景(比如游戏AI),DeepSeek-R1内置了一套完整的RL框架用于指导行为选择。它可以根据环境反馈动态调整参数配置,进而优化长期目标达成概率的同时也提高了短期收益水平。此过程中采用的是近端策略优化算法(PPO),因其稳定性和高效性而广受好评。 #### 监督学习组件 除了上述提到的自驱动式成长路径外,DeepSeek-R1同样重视传统意义上的精准度把控。借助海量高质量样本库的支持,经过精心调校后的神经网络可以快速定位问题核心所在,并给出最接近真实解的答案选项之一。这部分主要依赖Transformer架构完成,其特点是擅长处理序列类任务且易于扩展至更大规模的应用场合。 ```python import torch.nn as nn class TransformerModel(nn.Module): def __init__(self, vocab_size, d_model, nhead, num_encoder_layers, num_decoder_layers): super().__init__() self.transformer = nn.Transformer(d_model=d_model, nhead=nhead, num_encoder_layers=num_encoder_layers, num_decoder_layers=num_decoder_layers) def forward(self, src, tgt): output = self.transformer(src, tgt) return output ``` #### 输出层与后处理单元 最终得到的结果并非直接呈现给用户之前还需要经历一系列转化步骤以确保可读性强且符合预期格式要求。例如针对某些特殊领域可能需要额外加入专业知识背景来进行二次加工润色,使表述更加贴切生动。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

oo寻梦in记

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值