50 releases (7 breaking)
Uses new Rust 2024
| new 0.8.8 | Dec 19, 2025 |
|---|---|
| 0.8.7 | Nov 17, 2025 |
| 0.8.2 | Oct 24, 2025 |
| 0.5.5 | Jul 25, 2025 |
#190 in Encoding
50,435 downloads per month
Used in 30 crates
(3 directly)
305KB
5.5K
SLoC
ferroid
A Rust crate for generating and parsing Snowflake and ULID identifiers with bit-level compatibility and pluggable components.
Features
- π Bit-level compatibility with major Snowflake and ULID formats
- π§© Pluggable clocks and RNGs via
TimeSourceandRandSource - π§΅ Lock-free, lock-based, and single-threaded generators
- π Custom layouts via
define_snowflake_id!anddefine_ulid!macros - π’ Crockford base32 support with
base32feature flag
Table of Contents
- Quick Start
- Supported Layouts
- Choosing a Generator
- Usage
- Serialization (Serde)
- Base32 Encoding
- Feature Flags
- Behavior & Semantics
- Advanced Topics
- Benchmarks
- Testing
- License
Quick Start
use ferroid::id::ULID;
// Generate a ULID
let id = ULID::now();
println!("{}", id);
For more advanced usage patterns, see the Usage section below.
Supported Layouts
Snowflake
| Platform | Timestamp Bits | Machine ID Bits | Sequence Bits | Epoch |
|---|---|---|---|---|
| 41 | 10 | 12 | 2010-11-04 01:42:54.657 | |
| Discord | 42 | 10 | 12 | 2015-01-01 00:00:00.000 |
| 41 | 13 | 10 | 2011-01-01 00:00:00.000 | |
| Mastodon | 48 | 0 | 16 | 1970-01-01 00:00:00.000 |
ULID
| Platform | Timestamp Bits | Random Bits | Epoch |
|---|---|---|---|
| ULID | 48 | 80 | 1970-01-01 00:00:00.000 |
Choosing a Generator
Snowflake Generators
Choosing a Generator: Use BasicSnowflakeGenerator for single-threaded
contexts or one generator per thread. For shared multi-threaded access, prefer
AtomicSnowflakeGenerator for best performance, or LockSnowflakeGenerator
when atomics aren't available or for fairer scheduling under contention.
| Snowflake Generator | Monotonic | Thread-Safe | Lock-Free | Throughput | Use Case |
|---|---|---|---|---|---|
BasicSnowflakeGenerator |
β | β | β | Highest | Single-threaded or generator per thread |
LockSnowflakeGenerator |
β | β | β | Medium | Fair multithreaded access |
AtomicSnowflakeGenerator |
β | β | β | High | Fast concurrent generation |
ULID Generators
| ULID Generator | Monotonic | Thread-Safe | Lock-Free | Throughput | Use Case |
|---|---|---|---|---|---|
BasicUlidGenerator |
β | β | β | Slow | Thread-safe, always random, but slow |
BasicMonoUlidGenerator |
β | β | β | Highest | Single-threaded or generator per thread |
LockMonoUlidGenerator |
β | β | β | Medium | Fair multithreaded access |
AtomicMonoUlidGenerator |
β | β | β | High | Fast concurrent generation |
Usage
Basic Usage
The easiest way to generate a ULID is via ULID::now(), which gives you a
non-monotonic ULID:
use ferroid::id::ULID;
// A ULID (always random within the same millisecond)
let id: ULID = ULID::now();
Thread Local Generators
If you're generating many IDs, the simplest way to generate a ULID is via
Ulid, which provides a thread-local generator that can produce both
non-monotonic and monotonic ULIDs. Both are more performant than calling
ULID::now():
use ferroid::{generator::thread_local::Ulid, id::ULID};
// A ULID (always random within the same millisecond)
let id: ULID = Ulid::new_ulid();
// A monotonic ULID (faster, increments within the same millisecond)
let id: ULID = Ulid::new_ulid_mono();
Note: Thread-local generators are not currently available for
SnowflakeId-style IDs because they rely on a valid machine_id to avoid
collisions. Mapping unique machine_ids across threads requires coordination
beyond what thread_local! alone can guarantee.
Configuring Generators
Setting Up a Clock
In std environments, you can use the default MonotonicClock implementation.
It is thread-safe, lightweight to clone, and intended to be shared across the
application. If you're using multiple generators, clone and reuse the same clock
instance.
By default, MonotonicClock::default() sets the offset to UNIX_EPOCH. You
should override this depending on the ID specification. For example, Twitter IDs
use TWITTER_EPOCH, which begins at Thursday, November 4, 2010, 01:42:54.657
UTC (millisecond zero).
use ferroid::time::{MonotonicClock, UNIX_EPOCH};
// Same as MonotonicClock::default();
let clock = MonotonicClock::with_epoch(UNIX_EPOCH);
// let generator0 = BasicSnowflakeGenerator::new(0, clock.clone());
// let generator1 = BasicSnowflakeGenerator::new(1, clock.clone());
Generating IDs
Calling next_id() may yield Pending if the current sequence is exhausted.
Please note that while this behavior is exposed to provide maximum flexibility,
you must be generating enough IDs per millisecond to draw out the Pending
path. You may spin, yield, or sleep depending on your environment:
use ferroid::{
generator::{BasicSnowflakeGenerator, BasicUlidGenerator, IdGenStatus},
id::{SnowflakeTwitterId, ToU64, ULID},
rand::ThreadRandom,
time::{MonotonicClock, TWITTER_EPOCH},
};
let snow_gen = BasicSnowflakeGenerator::new(0, MonotonicClock::with_epoch(TWITTER_EPOCH));
let id: SnowflakeTwitterId = loop {
match snow_gen.next_id() {
IdGenStatus::Ready { id } => break id,
IdGenStatus::Pending { yield_for } => {
// Spin: lowest latency, but generally avoid.
core::hint::spin_loop();
// Yield to the scheduler: lets another thread run; still may busy-wait.
std::thread::yield_now();
// Sleep for the suggested backoff: frees the core, but wakeup is imprecise.
std::thread::sleep(std::time::Duration::from_millis(yield_for.to_u64()));
// For use in runtimes such as `tokio` or `smol`, use the async API (see below).
}
}
};
let ulid_gen = BasicUlidGenerator::new(MonotonicClock::default(), ThreadRandom::default());
let id: ULID = loop {
match ulid_gen.next_id() {
IdGenStatus::Ready { id } => break id,
IdGenStatus::Pending { yield_for } => {
std::thread::yield_now();
}
}
};
Asynchronous Generators
If you're in an async context (e.g., using Tokio or Smol), enable one of the following features to avoid blocking behavior:
async-tokioasync-smol
These features extend the generator to yield cooperatively when it returns
Pending, causing the current task to sleep for the specified yield_for
duration (typically ~1ms). While this is fully non-blocking, it may oversleep
slightly due to OS or executor timing precision, potentially reducing peak
throughput.
use ferroid::{
futures::{SnowflakeGeneratorAsyncTokioExt, UlidGeneratorAsyncTokioExt},
generator::{Error, LockMonoUlidGenerator, LockSnowflakeGenerator, Result},
id::{SnowflakeMastodonId, ULID},
rand::ThreadRandom,
time::{MASTODON_EPOCH, MonotonicClock, UNIX_EPOCH},
};
async fn run() -> Result<(), Error> {
let snow_gen = LockSnowflakeGenerator::new(0, MonotonicClock::with_epoch(MASTODON_EPOCH));
let id: SnowflakeMastodonId = snow_gen.try_next_id_async().await?;
println!("Generated ID: {}", id);
let ulid_gen = LockMonoUlidGenerator::new(
MonotonicClock::with_epoch(UNIX_EPOCH),
ThreadRandom::default(),
);
let id: ULID = ulid_gen.try_next_id_async().await?;
println!("Generated ID: {}", id);
Ok(())
}
fn async_tokio_main() -> Result<(), Error> {
tokio::runtime::Builder::new_multi_thread()
.enable_all()
.build()
.expect("failed to build Tokio runtime")
.block_on(run())
}
fn async_smol_main() -> Result<(), Error> {
smol::block_on(run())
}
fn main() -> Result<(), Error> {
let t1 = std::thread::spawn(async_tokio_main);
let t2 = std::thread::spawn(async_smol_main);
t1.join().expect("tokio thread panicked")?;
t2.join().expect("smol thread panicked")?;
Ok(())
}
Custom Layouts
To gain more control or optimize for different performance characteristics, you can define a custom layout.
Use the define_* macros below to create a new struct with your chosen name.
The resulting type behaves just like built-in types such as SnowflakeTwitterId
or ULID, with no extra setup required and full compatibility with the existing
API.
use ferroid::{define_snowflake_id, define_ulid};
// Example: a 64-bit Twitter-like ID layout
//
// Bit Index: 63 63 62 22 21 12 11 0
// +--------------+----------------+-----------------+---------------+
// Field: | reserved (1) | timestamp (41) | machine ID (10) | sequence (12) |
// +--------------+----------------+-----------------+---------------+
// |<----------- MSB ---------- 64 bits ----------- LSB ------------>|
define_snowflake_id!(
MyCustomId, u64,
reserved: 1,
timestamp: 41,
machine_id: 10,
sequence: 12
);
// Example: a 128-bit ULID using the Ulid layout
//
// - 0 bits reserved
// - 48 bits timestamp
// - 80 bits random
//
// Bit Index: 127 80 79 0
// +----------------+-------------+
// Field: | timestamp (48) | random (80) |
// +----------------+-------------+
// |<-- MSB -- 128 bits -- LSB -->|
define_ulid!(
MyULID, u128,
reserved: 0,
timestamp: 48,
random: 80
);
β οΈ Note: When using the snowflake macro, you must specify all four sections
(in order): reserved, timestamp, machine_id, and sequenceβeven if a
section uses 0 bits.
The reserved bits are always set to zero and can be reserved for future use.
Similarly, the ulid macro requires all three fields: reserved, timestamp,
and random.
Serialization (Serde)
Users must explicitly choose a serialization strategy using #[serde(with = "...")].
There are two serialization strategies:
as_native_snow/as_native_ulid: Serialize as native integer types (u64/u128)as_base32_snow/as_base32_ulid: Serialize as Crockford base32 encoded strings
Both strategies validate during deserialization and return errors for invalid
IDs. This prevents overflow scenarios where the underlying integer value exceeds
the valid range for the ID type. For example, SnowflakeTwitterId reserves 1
bit, making u64::MAX invalid. This validation behavior is consistent with
ferroid::base32::Error::DecodeOverflow used in the base32 decoding path (see
Base32 section).
use ferroid::{
id::SnowflakeTwitterId,
serde::{as_base32_snow, as_native_snow},
};
use serde::{Deserialize, Serialize};
#[derive(Serialize, Deserialize)]
struct Event {
#[serde(with = "as_native_snow")]
id_snow_int: SnowflakeTwitterId, // Serializes as an int: 123456789
#[serde(with = "as_base32_snow")]
id_snow_base32: SnowflakeTwitterId, // Serializes as a base32 string: "000000000001A"
}
Base32 Encoding
Enable the base32 feature to support Crockford Base32 encoding and decoding of
IDs. This is useful when you need fixed-width, URL-safe, and lexicographically
sortable strings (e.g. for databases, logs, or URLs).
With base32 enabled, each ID type automatically implements fmt::Display,
which internally uses .encode(). IDs also implement TryFrom<&str> and
FromStr, both of which decode via .decode().
For explicit, allocation-free formatting, use .encode() to get a lightweight
formatter. This avoids committing to a specific string type and lets the
consumer control how and when to render the result. The formatter uses a
stack-allocated buffer and avoids heap allocation by default. To enable
.to_string() and other owned string functionality, enable the alloc feature.
use core::str::FromStr;
use ferroid::{
base32::{Base32SnowExt, Base32SnowFormatter, Base32UlidExt, Base32UlidFormatter},
id::{SnowflakeId, SnowflakeTwitterId, ULID, UlidId},
};
let id = SnowflakeTwitterId::from_components(123_456, 0, 42);
assert_eq!(format!("{id}"), "00000F280001A");
assert_eq!(id.encode(), "00000F280001A");
assert_eq!(SnowflakeTwitterId::decode("00000F280001A").unwrap(), id);
assert_eq!(SnowflakeTwitterId::try_from("00000F280001A").unwrap(), id);
assert_eq!(SnowflakeTwitterId::from_str("00000F280001A").unwrap(), id);
let id = ULID::from_components(123_456, 42);
assert_eq!(format!("{id}"), "0000003RJ0000000000000001A");
assert_eq!(id.encode(), "0000003RJ0000000000000001A");
assert_eq!(ULID::decode("0000003RJ0000000000000001A").unwrap(), id);
assert_eq!(ULID::try_from("0000003RJ0000000000000001A").unwrap(), id);
assert_eq!(ULID::from_str("0000003RJ0000000000000001A").unwrap(), id);
Base32 Overflow Behavior
Base32 encodes in 5-bit chunks, which means encoded strings may represent more bits than the target type can hold. Ferroid handles this pragmatically:
- Strings that decode to values larger than the target type are accepted if all excess bits fall outside reserved regions
- If any excess bits fall into reserved regions (which must be zero),
decoding fails with
ferroid::base32::Error::DecodeOverflow - Types with no reserved bits (like
ULID) will never fail due to overflow - Types with reserved bits (like
SnowflakeTwitterId) validate that reserved bits remain unset
For complete technical details on the overflow model and differences from the strict ULID specification, see the Advanced Topics section.
Feature Flags
Ferroid has many feature flags to enable only what you need. You should determine your runtime and pick at least one ID family. If you need high performance generators, then also enable at least one generator style.
Runtime Selection
std: Standard library support (required forMonotonicClockand lock-based generators)alloc: Allocation support (for optimizedStringconstruction when enabled withbase32)
ID Family
snowflake: Enable Snowflake ID type(s)ulid: Enable ULID ID type(s)thread-local: Per-thread ULID generator (impliesstd,alloc,ulid,basic)
Generator Types
basic: Fast single-threaded generatorslock: Lock-based generators (impliesstd,alloc)atomic: Lock-free atomic generators
Optimizations & Extensions
cache-padded: Pad contended generators to reduce false sharing (benchmark to confirm benefit)parking-lot: Useparking_lotmutexes instead of std (impliesstd,alloc)async-tokio: Async support for Tokio runtime (impliesstd,alloc,futures)async-smol: Async support for smol runtime (impliesstd,alloc,futures)futures: Internal glue for async featuresbase32: Crockford Base32 encoding/decodingtracing: Emit tracing spans during ID generationserde: Serialization support
Presets
all: Enable all functionality (exceptcache-padded,parking-lot)
Usage Notes
Prefer basic or atomic generators. lock is a fallback for targets without
viable atomics. cache-padded and parking-lot only matter for lock-based
generators.
In no_std environments, you're currently limited to basic and atomic
generators (provided the target platform supports the correct atomic widths:
AtomicU64 for snowflake, AtomicU128 for ulid). You must also create your own
implementation of TimeSource<T> for the generators. base32 is also supported
in no_std.
Behavior & Semantics
Snowflake
- If the clock advances: reset sequence to 0 β
IdGenStatus::Ready - If the clock is unchanged: increment sequence β
IdGenStatus::Ready - If the clock goes backward: return
IdGenStatus::Pending - If the sequence increment overflows: return
IdGenStatus::Pending
ULID
This implementation respects monotonicity within the same millisecond in a single generator by incrementing the random portion of the ID and guarding against overflow.
- If the clock advances: generate new random β
IdGenStatus::Ready - If the clock is unchanged: increment random β
IdGenStatus::Ready - If the clock goes backward: return
IdGenStatus::Pending - If the random increment overflows: return
IdGenStatus::Pending
Advanced Topics
Collision Probability Analysis
When generating time-sortable IDs that use random bits, it's important to estimate the probability of collisions (i.e., two IDs being the same within the same millisecond), given your ID layout and system throughput.
Monotonic IDs with Multiple ULID Generators
If you have $g$ generators (e.g., distributed nodes), and each generator produces $k$ sequential (monotonic) IDs per millisecond by incrementing from a random starting point, the probability that any two generators produce overlapping IDs in the same millisecond is approximately:
$$P_\text{collision} \approx \frac{g(g-1)(2k-1)}{2 \cdot 2^r}$$
Where:
- $g$ = number of generators
- $k$ = number of monotonic IDs per generator per millisecond
- $r$ = number of random bits per ID
- $P_\text{collision}$ = probability of at least one collision
Note: The formula above uses the approximate (birthday bound) model, which assumes that:
- $k \ll 2^r$ and $g \ll 2^r$
- Each generator's range of $k$ IDs starts at a uniformly random position within the $r$-bit space
Estimating Time Until a Collision Occurs
While collisions only happen within a single millisecond, we often want to know how long it takes before any collision happens, given continuous generation over time.
The expected time in milliseconds to reach a 50% chance of collision is:
$$ T_{\text{50%}} \approx \frac{\ln 2}{P_\text{collision}} = \frac{0.6931 \cdot 2 \cdot 2^r}{g(g - 1)(2k - 1)} $$
This is derived from the cumulative probability formula:
$$P_\text{collision}(T) = 1 - (1 - P_\text{collision})^T$$
Solving for $T$ when $P_\text{collision}(T) = 0.5$:
$$(1 - P_\text{collision})^T = 0.5$$ $$\Rightarrow T \approx \frac{\ln(0.5)}{\ln(1 - P_\text{collision})}$$
Using the approximation $\ln(1 - x) \approx -x$ for small $x$, this simplifies to:
$$\Rightarrow T \approx \frac{\ln 2}{P_\text{collision}}$$
The $\ln 2$ term arises because $\ln(0.5) = -\ln 2$. After $T_\text{50%}$ milliseconds, there's a 50% chance that at least one collision has occurred.
Example Collision Probabilities
| Generators ($g$) | IDs per generator per ms ($k$) | $P_\text{collision}$ | Estimated Time to 50% Collision ($T_{\text{50%}}$) |
|---|---|---|---|
| 1 | 1 | $0$ (single generator; no collision possible) | β (no collision possible) |
| 1 | 65,536 | $0$ (single generator; no collision possible) | β (no collision possible) |
| 2 | 1 | $\displaystyle \frac{2 \times 1 \times 1}{2 \cdot 2^{80}} \approx 8.27 \times 10^{-25}$ | $\approx 8.38 \times 10^{23} \text{ ms}$ |
| 2 | 65,536 | $\displaystyle \frac{2 \times 1 \times 131{,}071}{2 \cdot 2^{80}} \approx 1.08 \times 10^{-19}$ | $\approx 6.41 \times 10^{18} \text{ ms}$ |
| 1,000 | 1 | $\displaystyle \frac{1{,}000 \times 999 \times 1}{2 \cdot 2^{80}} \approx 4.13 \times 10^{-19}$ | $\approx 1.68 \times 10^{18} \text{ ms}$ |
| 1,000 | 65,536 | $\displaystyle \frac{1{,}000 \times 999 \times 131{,}071}{2 \cdot 2^{80}} \approx 5.42 \times 10^{-14}$ | $\approx 1.28 \times 10^{13} \text{ ms} \approx 406\ years$ |
Base32 Overflow Details
Base32 encodes in 5-bit chunks. That means:
- A
u32(32 bits) maps to 7 Base32 characters (7 Γ 5 = 35 bits) - A
u64(64 bits) maps to 13 Base32 characters (13 Γ 5 = 65 bits) - A
u128(128 bits) maps to 26 Base32 characters (26 Γ 5 = 130 bits)
This creates an invariant: an encoded string may contain more bits than the target type can hold.
ULID Specification vs. Ferroid
The ULID specification is strict:
Technically, a 26-character Base32 encoded string can contain 130 bits of information, whereas a ULID must only contain 128 bits. Therefore, the largest valid ULID encoded in Base32 is 7ZZZZZZZZZZZZZZZZZZZZZZZZZ, which corresponds to an epoch time of 281474976710655 or 2 ^ 48 - 1.
Any attempt to decode or encode a ULID larger than this should be rejected by all implementations, to prevent overflow bugs.
Ferroid takes a more flexible stance:
- Strings like
"ZZZZZZZZZZZZZZZZZZZZZZZZZZ"(which technically overflow) are accepted and decoded without error - However, if any of the overflowed bits fall into reserved regions (which must
remain zero), decoding will fail with
ferroid::base32::Error::DecodeOverflow
This allows any 13-character Base32 string to decode into a u64, or any
26-character string into a u128, as long as reserved layout constraints
aren't violated. If the layout defines no reserved bits, decoding is always
considered valid.
For example:
- A
ULIDhas no reserved bits, so decoding will never fail due to overflow - A
SnowflakeTwitterIdreserves the highest bit, so decoding must ensure that bit remains unset
If reserved bits are set during decoding, Ferroid returns a
ferroid::base32::Error::DecodeOverflow { id } containing the full (invalid)
ID. You can recover by calling .into_valid() to mask off reserved
bitsβallowing either explicit error handling or silent correction.
Benchmarks
See the Benchmarks
Testing
Run all tests with:
cargo test --features all
License
Licensed under either of:
at your option.
Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in the work by you, as defined in the Apache-2.0 license, shall be dual licensed as above, without any additional terms or conditions.
Dependencies
~1β8.5MB
~149K SLoC