2 releases

0.1.1 Nov 14, 2025
0.1.0 Nov 14, 2025

#928 in Machine learning


Used in 2 crates

MIT/Apache

280KB
6K SLoC

LLM Orchestrator Core - Workflow orchestration engine for LLM pipelines.

This crate provides the core functionality for defining, validating, and executing multi-step LLM workflows with support for DAG-based execution, parallel processing, and fault tolerance.

Example

use llm_orchestrator_core::{Workflow, ExecutionContext};
use serde_json::json;

// Load workflow from YAML
let yaml = r#"
name: "simple-workflow"
steps:
  - id: "step1"
    type: "llm"
    provider: "openai"
    model: "gpt-4"
    prompt: "Say hello to {{ name }}"
    output: ["greeting"]
"#;

let workflow = Workflow::from_yaml(yaml)?;

// Validate workflow
workflow.validate()?;

// Create execution context
let mut inputs = std::collections::HashMap::new();
inputs.insert("name".to_string(), json!("World"));
let ctx = ExecutionContext::new(inputs);

// Render template with context
let prompt = ctx.render_template("Say hello to {{ name }}")?;
assert_eq!(prompt, "Say hello to World");

Dependencies

~20–42MB
~627K SLoC