2 releases
| new 0.1.0-alpha.2 | Dec 23, 2025 |
|---|---|
| 0.1.0-alpha.1 | Oct 13, 2025 |
#2113 in Machine learning
Used in sklears
6MB
137K
SLoC
sklears-ensemble
Latest release:
0.1.0-alpha.2(December 22, 2025). See the workspace release notes for highlights and upgrade guidance.
Overview
sklears-ensemble delivers bagging, boosting, stacking, voting, and random forest implementations with scikit-learn parity and Rust-first performance.
Key Features
- Tree Ensembles: RandomForest, ExtraTrees, GradientBoosting, Histogram-based boosting, IsolationForest.
- Linear/Stochastic Ensembles: Bagging, AdaBoost, Stacking, Voting, Snapshot ensembles, warm-starting.
- GPU + SIMD: Accelerated split finding, batched inference, and quantized histograms.
- AutoML Integration: Works with feature selection, model selection, and inspection crates for end-to-end workflows.
Quick Start
use sklears_ensemble::RandomForestClassifier;
use scirs2_core::ndarray::{array, Array1};
let x = array![
[0.0, 1.0, 2.0],
[1.0, 0.5, 2.1],
[0.5, 2.0, 1.5],
];
let y = Array1::from(vec![0, 1, 0]);
let forest = RandomForestClassifier::builder()
.n_estimators(500)
.max_depth(Some(10))
.n_jobs(-1)
.bootstrap(true)
.build();
let fitted = forest.fit(&x, &y)?;
let predictions = fitted.predict(&x)?;
Status
- Included in the 11,292 passing workspace tests for
0.1.0-alpha.2. - Benchmarks demonstrate 5–30× faster training versus scikit-learn on medium to large datasets.
- Roadmap items (GPU GradientBoosting, federated ensembles) live in this crate’s
TODO.md.
Dependencies
~97MB
~1.5M SLoC