From Differential Calculus to Automatic Differentiation

Gabriel Peyré

November 10, 2019

Part 1 - Gradients

- 1) For $g: \mathbb{R} \to \mathbb{R}$, compute the derivative of $x \in \mathbb{R} \mapsto g(ax+b) \in \mathbb{R}$ using the definition of the derivative and using the chain rule.
- **2)** For $g: \mathbb{R}^p \to \mathbb{R}$ and $A \in \mathbb{R}^{p,n}, b \in \mathbb{R}^p$, compute the derivative of $x \in \mathbb{R}^n \mapsto g(Ax + b) \in \mathbb{R}$ using the definition of the derivative and using the chain rule.
- **3)** What is the gradient of $x \in \mathbb{R}^n \mapsto ||x||_p$ where $||x||_p^p \stackrel{\text{def.}}{=} \sum_i |x_i|^p$ (and give the domain on which it is differentiable)?
- **4)** Compute the gradient of $X \in \mathbb{R}^{n \times n} \mapsto \operatorname{tr}(X) = \sum_{i} X_{i,i}$, and $X \in \mathbb{R}^{n \times n} \mapsto \operatorname{det}(A)$.

Part 2 - Jacobians

- **1)** Using the definition of the Jacobian, compute the Jacobian of $X \in \mathbb{R}^{n \times p} \mapsto X^{\top}$, $X \in \mathbb{R}^{n \times p} \mapsto XX^{\top}$, $X \in \mathbb{R}^{n \times n} \mapsto X^2$, $X \mapsto X^{-1}$.
- 2) What is the Jacobian of $X \in \mathbb{R}^{n \times p} \mapsto AXB$ where A and B are also matrices (you will indicate their size and the size of the output matrix).
- 3) If $X \in \mathcal{S}_n^+$ is symmetric positive semi-definitive (i.e. its eigenvalues are positives), show that there exists a unique matrix $\sqrt{X} \in \mathcal{S}_n^+$ such that $X = \sqrt{X}\sqrt{X}$. Compute the Jacobian of $X \mapsto \sqrt{X}$.

Part 3 - Gradients for matrix functions

- 1) Compute the gradient of $X \in \mathbb{R}^{n \times n} \mapsto \operatorname{tr}(X^2)$, $X \in \mathbb{R}^{n \times n} \mapsto \operatorname{det}(X^2)$ using the definition of a differential and the chain rule.
- **2)** Same question for $X \in \mathbb{R}^{n \times p} \mapsto \operatorname{tr}(XX^{\top}), X \in \mathbb{R}^{n \times p} \mapsto \operatorname{det}(XX^{\top}).$
- **3)** Same question for $X \in \mathbb{R}^{n \times p} \mapsto \operatorname{tr}(\sqrt{XX^{\top}})$. When $X \in \mathbb{R}^{n \times 1}$ or $X \in \mathbb{R}^{1 \times p}$, what formula do you recognize?

Part 4 - Smoothed total variation

- 1) What are the derivative and second derivative of $f: x \in \mathbb{R} \mapsto \sqrt{x^2 + \varepsilon^2}$. Prove that f has a Lipschitz derivative and give an upper bound on the Lipschitz constant.
- **2)** Same question with $x \in \mathbb{R}^n \mapsto \|x\|_{\varepsilon} \stackrel{\text{def.}}{=} \sum_{i=1}^n \sqrt{x_i^2 + \varepsilon^2}$.
- **3)** For $x \in \mathbb{R}^n$, we consider the vector of finite differences ("discretized gradient") $Gx \stackrel{\text{def.}}{=} (x_2 x_1, x_3 x_2, \dots, x_n x_{n-1}) \in \mathbb{R}^{n-1}$. Show that G is linear and compute its adjoint $u \in \mathbb{R}^{n-1} \mapsto G^{\top}u \in \mathbb{R}^n$.
- **4)** Compute the gradient of the 1-D smoothed total variation $x \in \mathbb{R}^n \mapsto ||Gx||_{\varepsilon} \in \mathbb{R}$.
- **5)** What is the limit as $\varepsilon \to 0$ of $\|\cdot\|_{\varepsilon}$ and of its gradient? When is this limit differentiable?

Part 5 - Calculus graph and differentiation modes

1) Produce an efficient computational graph (DAG) for the function

$$f(x) = \frac{\log(x + \sqrt{x^2 + 1})}{\sqrt{x^2 + 1}} - \log^3(x + \sqrt{x^2 + 1}).$$

- 2) Write the pseudo-code associated to the forward differentiation method applied to this graph (i.e. using the classical chain rule).
- 3) Write the pseudo-cove associated to the backward differentiation method applied to this graph (i.e. using the adjoint chain rule).
- **4)** Which one is the fastest? Why?

Part 6 - Differential calculus for neural layers

We consider a function computed using a neural network with two-layers $f(x, A, b) = b\rho(Ax)$, where $x \in \mathbb{R}^p$, $A \in \mathbb{R}^{q \times p}$ (q is the number of neurons) and $b \in \mathbb{R}^{1 \times q}$. Here $\rho : \mathbb{R} \to \mathbb{R}$ is a smooth non-linearity and with a slight abuse of notation, for $u \in \mathbb{R}^q$, we denote $\rho(u) = (\rho(u_k))_{k=1}^q \in \mathbb{R}^q$.

- **1)** What is the Jacobian of $\rho : \mathbb{R}^q \to \mathbb{R}^q$ defined this way? What are the Jacobians of $x \mapsto Ax$ and $A \mapsto Ax$?
- 2) Using the chain rule, compute the derivative of f with respect to x and with respect to the network weights (A, b). What is its complexity in function of (p, q)?
- **3)** Implement the same derivative but this time using backward differentiation. What is the resulting complexity? How does this compare to directly computing the gradient of f by computing its Taylor expansion?
- **4)** Using $\nabla_{A,b}f$ compute the gradient of the training error $\sum_{i=1}^{n} (f(x_i,A,b)-y_i)^2$.
- **5)** We now consider a "residual network" $F(x,A) = x + A^{\top} \rho(Ax) \in \mathbb{R}^n$ (this type of architecture shows up for instance when doing descent methods or discretizing ODEs and PDEs, and one might want to optimize the kernel A). Given some loss function $L: \mathbb{R}^n \to \mathbb{R}$, what is the gradient of L(F(x,A)) with respect to x and A? Write the pseudo code to apply the adjoints Jacobian $\left(\frac{\partial F}{\partial x}\right)^{\top}u\in\mathbb{R}^n$ and $\left(\frac{\partial F}{\partial A}\right)^{\top}u\in\mathbb{R}^{n\times p}$ to some vector $u\in\mathbb{R}^n$ (typically $u=\nabla L(F(x,A))$), using the backward chain rule.