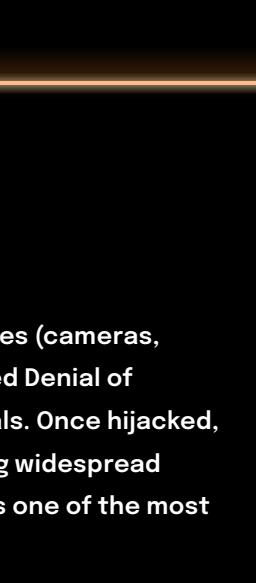
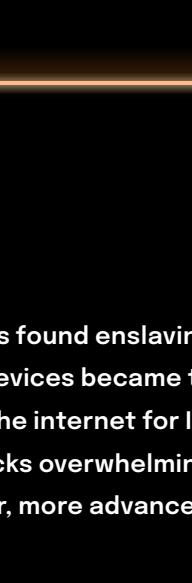


Threat Talk 1:

Can't deny DDoS in 2024?

Distributed-denial-of-service attacks

threat-talks.com



Distributed-denial-of-service attacks, more commonly referred to as DDoS attacks, are malicious attempts to disrupt traffic of a specific server, service or network by overwhelming said target or its surroundings with an abundance of internet traffic. Think of it as an unexpected traffic jam clogging up the highway, preventing regular traffic from arriving at its destination.

DDoS attacks are becoming increasingly more frequent, and there doesn't appear to be any signs of slowing down. Want to know how often these attacks really take place? Below you'll find infographics on DDoS attacks in general, as well as three recent threats associated with DDoS attacks.

If you're looking for insights in the type of DDoS attacks that are being used, expert opinions on the best prevention and remediation and much more, tune in for this episode of Threat Talks: Can't deny DDoS in 2024.

In this episode of Threat Talks we will discuss the following threats:

1. Mirai botnet
2. HTTP/2 Rapid Reset
3. Reflection & Amplification

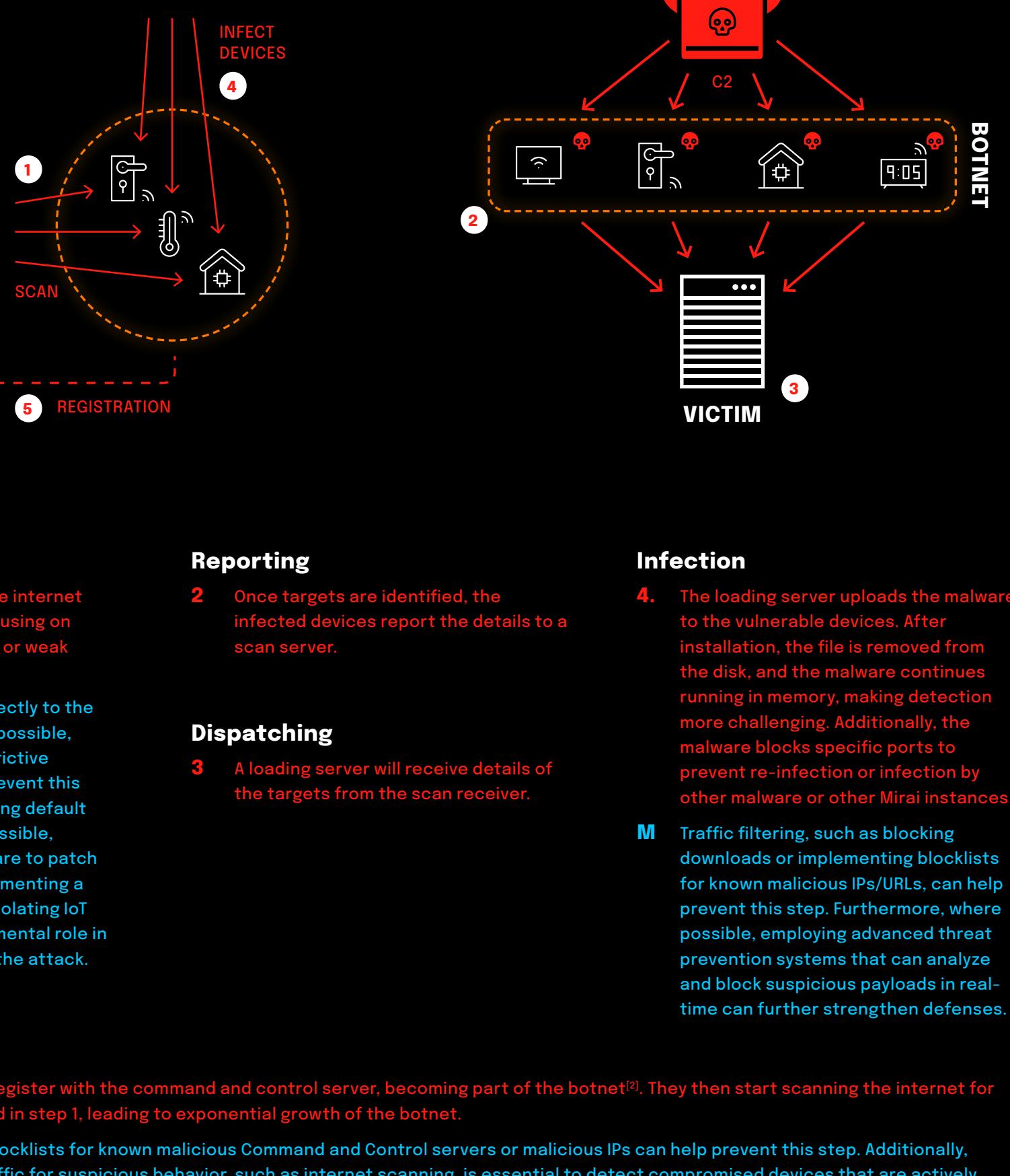
Fact 1

According to Kaspersky's quarterly report of late 2023, **57,116 DDoS attacks** were reported.

Source: [Kaspersky](#)

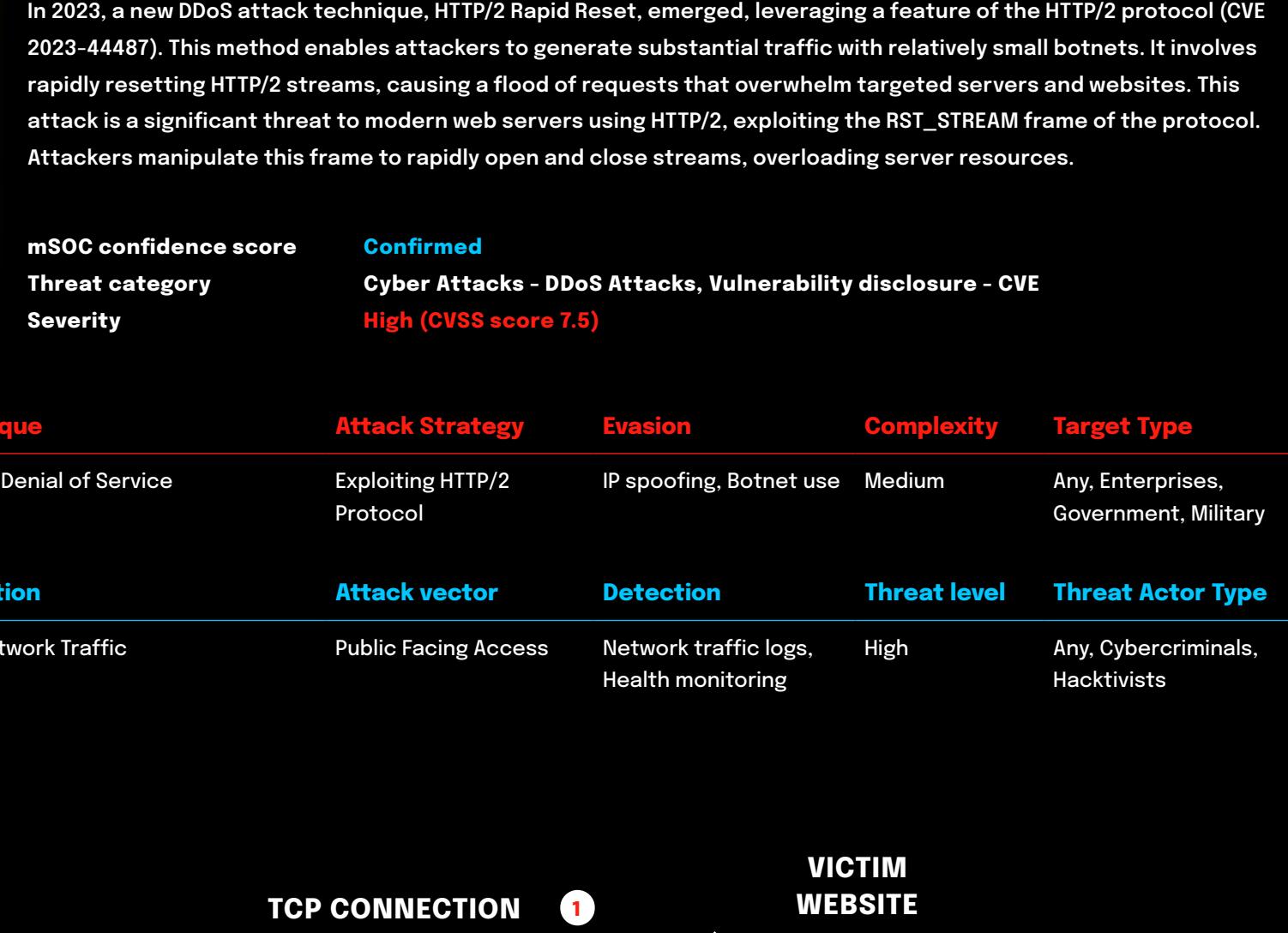
Fact 2

A Ponemon Institute study revealed that during a DDoS attack, every minute of downtime costs **\$22,000**.


Source: [Cloudbric](#)

Fact 3

The longest DDoS attack in history occurred in 2019 and lasted **509 hours**.


Source: [Kaspersky](#)

Top Attacked Industry by Region

Source: [Cloudflare](#)

Mirai botnet

In late 2016, Mirai, a new malware, was found enslaving numerous Internet of Things (IoT) devices (cameras, routers, DVRs) into a botnet. These devices became tools in a network for launching Distributed Denial of Service (DDoS) attacks. Mirai scans the internet for IoT devices with default or weak credentials. Once hijacked, they orchestrate massive DDoS attacks overwhelming websites and internet services, causing widespread disruptions. Post its discovery, newer, more advanced strains have emerged and Mirai remains one of the most active global botnets to this day.

Replication

Scanning internet

- 1 Infected devices scan the internet for potential targets, focusing on IoT devices⁽¹⁾ with default or weak credentials.

M Not exposing devices directly to the internet, or, if this is not possible, limiting access with restrictive firewall rules, will help prevent this step. Additionally, changing default credentials whenever possible, regularly updating firmware to patch vulnerabilities, and implementing a Zero Trust approach by isolating IoT devices will play a fundamental role in preventing this stage of the attack.

Reporting

- 2 Once targets are identified, the infected devices report the details to a scan server.

Dispatching

- 3 A loading server will receive details of the targets from the scan receiver.

Attack

- 4 The loading server uploads the malware to the vulnerable devices. After installation, the file is removed from the disk, and the malware continues running in memory, making detection more challenging. Additionally, the malware blocks specific ports to prevent re-infection or infection by other malware or other Mirai instances.

M Traffic filtering, such as blocking downloads or implementing blocklists for known malicious IPs/URLs, can help prevent this step. Furthermore, where possible, employing advanced threat prevention systems that can analyze and block suspicious payloads in real-time can further strengthen defenses.

Registration

- 5 Newly infected devices register with the command and control server, becoming part of the botnet⁽²⁾. They then start scanning the internet for new targets, as explained in step 1, leading to exponential growth of the botnet.

M Implementing dynamic blocklists for known malicious Command and Control servers or malicious IPs can help prevent this step. Additionally, monitoring outbound traffic for suspicious behavior, such as internet scanning, is essential to detect compromised devices that are actively seeking new targets, indicating that they are part of a botnet.

Infection

- 4 The loading server uploads the malware to the vulnerable devices. After installation, the file is removed from the disk, and the malware continues running in memory, making detection more challenging. Additionally, the malware blocks specific ports to prevent re-infection or infection by other malware or other Mirai instances.

M Traffic filtering, such as blocking downloads or implementing blocklists for known malicious IPs/URLs, can help prevent this step. Furthermore, where possible, employing advanced threat prevention systems that can analyze and block suspicious payloads in real-time can further strengthen defenses.

Attack

Command and Control

- 1 The attacker utilizes the command and control server to send commands to the botnet, including information about the target.

M Modern firewalls and Intrusion Prevention Systems (IPS) are able to recognize Command and Control (C2) traffic and block this, still this heavily depends on how the C2 traffic is being sent.

Attack Execution

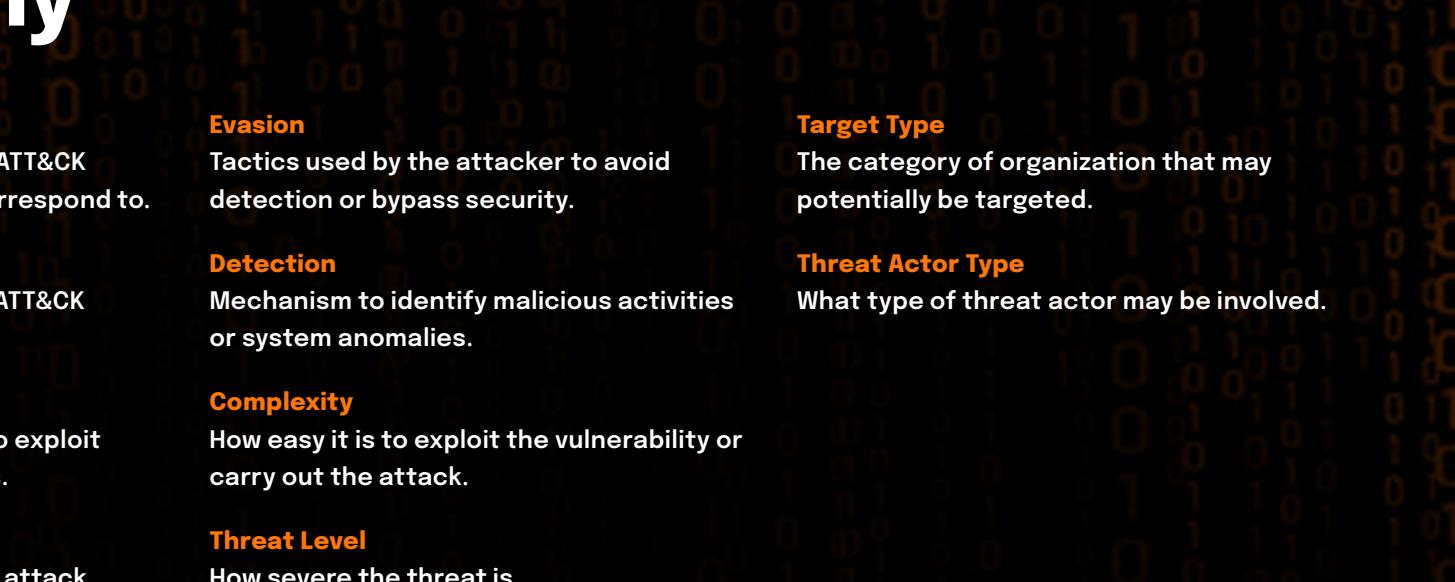
- 2 Upon receiving the commands, the botnet initiates the attack by sending packets to flood the target, following the specified attack pattern.

M Traffic monitoring and health check tools will help detect attacks such as DDoS in time. Implementing GEO blocking may help reduce the size of the attack. Some firewalls have features to combat these kinds of attacks by implementing DDoS protection functionalities. Fine-tuning firewall settings and implementing load balancing can also help. Services like Cloudflare offer solutions to help mitigate these attacks and can help prevent downtime.

DDoS

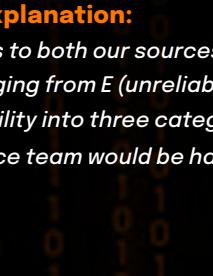
- 3 A successful attack results in a denial of service, rendering the target unreachable or causing it to crash.

M Having redundant systems and backup strategies in place is essential for maintaining operations and preventing downtime.



HTTP/2 rapid reset

In 2023, a new DDoS attack technique, HTTP/2 Rapid Reset, emerged, leveraging a feature of the HTTP/2 protocol (CVE-2023-44487). This method enables attackers to generate substantial traffic with relatively small botnets. It involves rapidly resetting HTTP/2 streams, causing a flood of requests that overwhelm targeted servers and websites. This attack is a significant threat to modern web servers using HTTP/2, exploiting the RST_STREAM frame of the protocol. Attackers manipulate this frame to rapidly open and close streams, overloading server resources.


⁽¹⁾ IoT, which stands for the Internet of Things, refers to everyday objects that are connected to the internet and capable of sending and receiving data. These devices can communicate autonomously with each other. Examples include common household items like smart thermostats, home security cameras, and smart lights, as well as specialized enterprise devices such as certain medical equipment and manufacturing tools.

⁽²⁾ A botnet is a network of computers or other internet-connected devices that have been infected with malware, allowing a hacker to control them. These infected devices, called "bots," can be used together to perform tasks like sending spam emails, stealing data, or launching attacks on websites, often without the owners' knowledge.

- At this stage, the data server allocates memory to store the query, performs header decoding, and then processes the URL and performs header decoding. Normally, an HTTP/2 server is capable of processing quickly, taking about 10ms to handle the state without issues. However, the rapid manipulation of streams can lead to the state becoming unresponsive, causing the server to become unresponsive, leading to the backlog of work.

As a result, the server's resources are consumed, potentially leading to server crashes or even crashing the server completely, rendering the server unusable.

Reflection and Amplification DDoS attacks

Reflection and amplification DDoS attacks have become a prevalent threat in the cyber landscape. These attacks exploit the combination of reflection techniques and amplification tactics to generate massive traffic volumes to overwhelm target systems. In a reflection attack, attackers spoof the target's IP address and send requests to a public service provider, such as a DNS or NTP server, to receive responses that are significantly larger than the requests, multiplying the volume of traffic directed at the victim. These kind of attacks commonly exploit protocols such as DNS, NTP, and SSDP, which can respond with much larger payloads compared to the initial request.

⁽¹⁾ A stream is an independent bidirectional sequence of frames exchanged between the client and the server (e.g., HTML content, CSS file, JavaScript file, etc.).

⁽²⁾ Additional time and resources required to set up and maintain multiple TCP connections.

M Using a malicious DNS server to respond to a query with a large amount of data can result in a significant increase in the size of the response, which can then be used to overwhelm the victim's network.

M Implementing health checks and server resource monitoring can alert administrators before resources are exhausted. Providers like Cloudflare offer solutions to guard against these kinds of attacks.

Taxonomy

ATT&CK Technique

Which technique does the MITRE ATT&CK framework technique does the threat actor use?

ATT&CK Mitigation

Which mitigation can be applied? MITRE ATT&CK

Attack Strategy

Attack vector

Attack execution

Attack detection

Attack evasion

Attack persistence

Attack privilege escalation

Attack exfiltration

Attack command and control

Attack denial of service

Attack infiltration

Attack exfiltration

Attack command and control

Attack denial of service

Attack infiltration

Attack exfiltration

Attack command and control

Attack denial of service

Attack infiltration

Attack exfiltration

Attack command and control

Attack denial of service

Attack infiltration

Attack exfiltration

Attack command and control

Attack denial of service

Attack infiltration

Attack exfiltration

Attack command and control

Attack denial of service

Attack infiltration

Attack exfiltration

Attack command and control

Attack denial of service

Attack infiltration

Attack exfiltration

Attack command and control

Attack denial of service

Attack infiltration

Attack exfiltration

Attack command and control

Attack denial of service

Attack infiltration

Attack exfiltration

Attack command and control

Attack denial of service

Attack infiltration

Attack exfiltration

Attack command and control

Attack denial of service

Attack infiltration

Attack exfiltration

Attack command and control

Attack denial of service

Attack infiltration

Attack exfiltration

Attack command and control

Attack denial of service

Attack infiltration

Attack exfiltration

Attack command and control

Attack denial of service

Attack infiltration

Attack exfiltration

Attack command and control

Attack denial of service

Attack infiltration

Attack exfiltration

Attack command and control

Attack denial of service

Attack infiltration

Attack exfiltration

Attack command and control

Attack denial of service

Attack infiltration

Attack exfiltration

Attack command and control

Attack denial of service

Attack infiltration