

SPECIAL

Threat Talks Special
Unraveling CVE-2024-3400

threat-talks.com

A Comprehensive Analysis of the Vulnerability

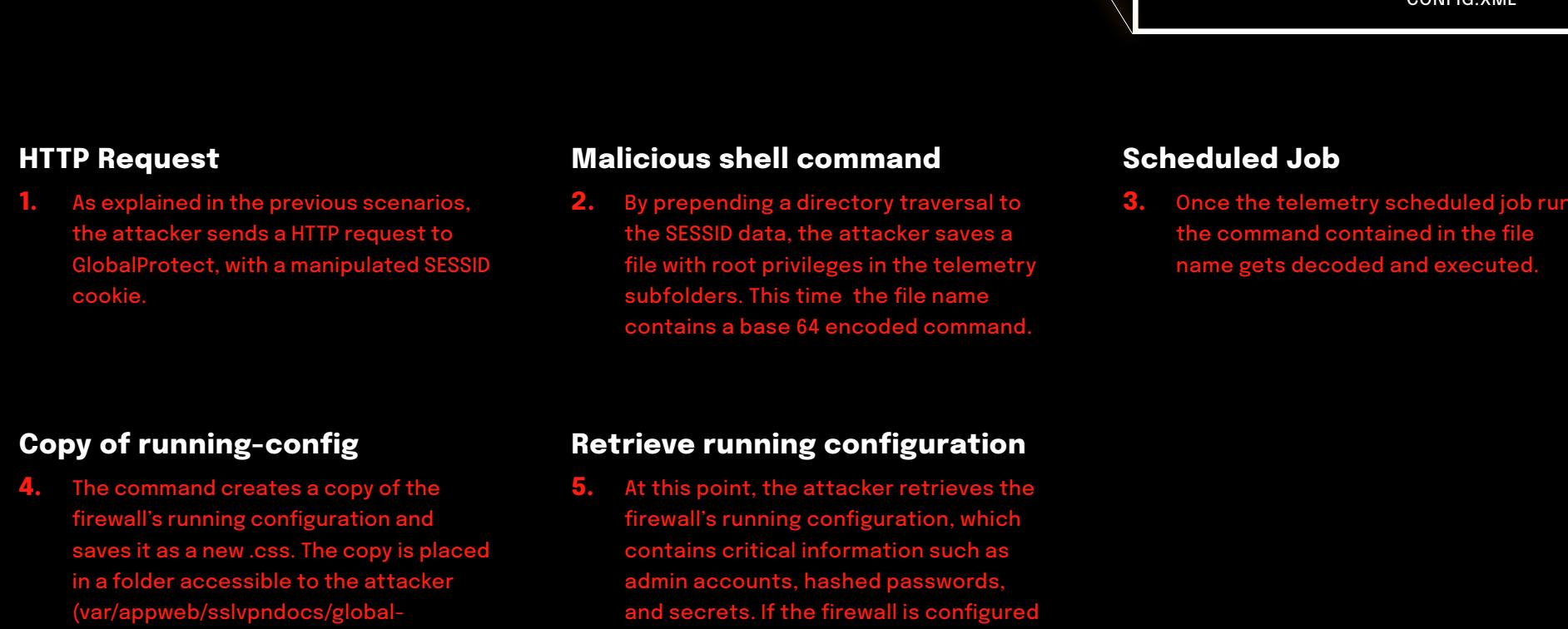
On April 12th, Palo Alto Networks initially shared information about CVE-2024-3400, a significant vulnerability within their PAN-OS software. Just a few days later, further details emerged, indicating a broader scope of potentially affected devices than initially anticipated.

In this special edition of Threat Talks, we delve into a critical cybersecurity development of CVE-2024-3400. What is it exactly? It's a high-risk vulnerability found in the GlobalProtect feature, carrying the maximum severity score of 10. Join us as we unpack the details of this serious security flaw and its implications for users worldwide.

In this special episode we will discuss the following scenarios:

- Command execution
- 'Running-config'
- Backdoor

PAN-OS
CVE-2024-3400 Exploitation


On April 12, 2024, a critical vulnerability, identified as CVE-2024-3400, was disclosed in PAN-OS. This flaw enables arbitrary file creation, leading to command injection in the GlobalProtect portal and gateway, allowing attackers to execute commands with root privileges. The vulnerability's severe impact is due to its network attack vector and low complexity, facilitating exploitation without user interaction. Forensic investigations on several companies have revealed signs of this vulnerability being exploited in the wild as early as March 26.

mSOC confidence score Confirmed
Threat category Vulnerability Disclosures - 0-days
Severity Critical (CVSS score 10)

ATT&CK Technique	Attack Strategy	Evasion	Complexity	Target Type
T1190 - Exploit Public-Facing Application	Exploit public face application to exfiltrate data and gain initial foothold	Code Obfuscation, Use of legitimate processes	Low	Enterprises, Government, Military
ATT&CK Mitigation	Attack vector	Detection	Threat level	Threat Actor Type
M1030 - Network Segmentation	Public Facing Access	Network traffic	Critical	Any
M1051 - Update Software				
M1016 - Vulnerability Scanning				

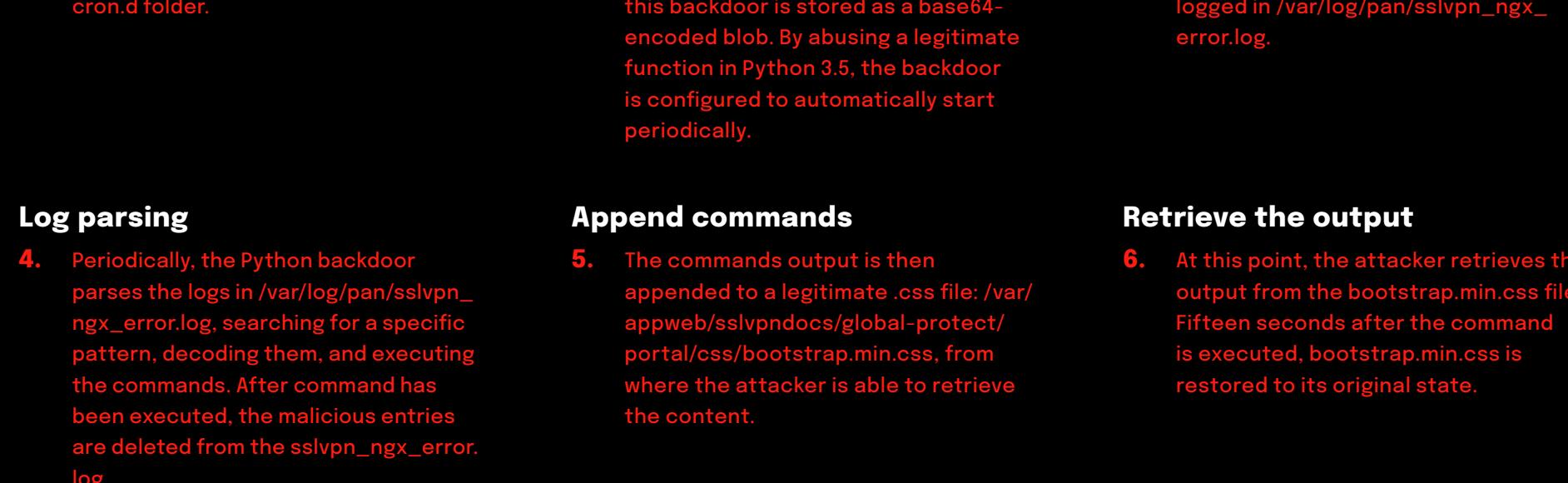
1A. Command Execution

ATTACKER

HTTP Request

1. The attacker sends a HTTP request to GlobalProtect, with a manipulated SESSION cookie.

Malicious shell command


2. The web server normally saves data affiliated with unauthenticated sessions in /tmp/sslvpn, with a file named as the data contained in the cookie SESSIONID. By prepending a directory traversal to the SESSIONID data, the attacker is able to save the file with root privileges anywhere in the system, in this case in the telemetry subfolders

Scheduled Job

3. The telemetry scheduled job, trusting that the files were system-generated, uses the filenames as part of the command, resulting in the execution of the attacker-supplied code with elevated privileges. The output is then piped in a curl command connecting back to the attacker C2 server via DGA¹¹

1B. Retrieving 'running-config' of the firewall

ATTACKER

HTTP Request

1. As explained in the previous scenarios, the attacker sends a HTTP request to GlobalProtect, with a manipulated SESSION cookie.

Malicious shell command

2. By prepending a directory traversal to the SESSIONID data, the attacker saves a file with root privileges in the telemetry subfolders. This time the file name contains a base 64 encoded command.

Scheduled Job

3. Once the telemetry scheduled job runs, the command contained in the file name gets decoded and executed.

Copy of running-config

4. The command creates a copy of the firewall's running configuration and saves it as a new .css. The copy is placed in a folder accessible to the attacker (var/appweb/sslvpn/docs/global-protect/).

Retrieve running configuration

5. At this point, the attacker retrieves the firewall's running configuration, which contains critical information such as admin accounts, hashed passwords, and secrets. If the firewall is configured with a default master key, cracking the encrypted data can be trivial for the attacker.

Embedding commands

3. The attacker continuously sends HTTP requests to GlobalProtect, embedding commands that follow a specific pattern. These commands are also logged in /var/log/sslvpn_ngx_error.log

HTTP Request

1. As seen in attack A, the attacker sends an HTTP request to GlobalProtect with a malicious SESSION cookie, but this time the attack creates a cron job in the cron.d folder.

Scheduled job execution

2. When the scheduled job executes, the firewall connects to a C2 server and installs a Python backdoor on the device. The main idea is to abuse the cron job to run a base64-encoded blob. By abusing a legitimate function in cron to start the backdoor periodically, it is configured to start the backdoor periodically.

Embedding commands

3. The attacker continuously sends HTTP requests to GlobalProtect, embedding commands that follow a specific pattern. These commands are also logged in /var/log/sslvpn_ngx_error.log

Log parsing

4. Periodically, the Python backdoor parses the logs in /var/log/pan/sslvpn_ngx_error.log, searching for a specific pattern, decoding them, and executing the commands. After command execution, the malicious entries are deleted from the sslvpn_ngx_error.log.

Append commands

5. The command output is then appended to a legitimate .css file: /var/appweb/sslvpn/docs/global-protect/.css, where the attacker is able to retrieve the contents.

Retrieve the output

6. At this point, the attacker retrieves the output from the bootstrap.min.css file. Fifteen seconds after the command is restored to its original state, it is executed.

Workaround / Solution

- 1. Disabling telemetry stops the scheduled telemetry jobs from executing malicious commands, but it does not prevent arbitrary file writing.
- 2. Palo Alto has released a content update featuring three different threat signatures to block exploitation of arbitrary file writing.
- 3. For full mitigation, upgrading to a non-vulnerable version of PAN-OS is necessary.
- 4. An extra solution could be to separate VPN features from the Firewall, essentially creating a separate zero-trust protected surface for VPN access. This will result in less impact when such vulnerabilities are exploited.

ON2IT - What the SOC did

Upon proactively applying all security recommended on April 12th, our mSOC¹⁰ identified the details of the attack and immediately started investigating. Similar to attack A, the mSOC¹⁰ detected the malicious cron job and executed a script to detect any exploit attempts on devices. The mSOC¹⁰ executed this script on all managed customer systems upon the availability of new signatures. Our Network root engineer to secure forensic artifacts on devices, and evaluate the extent of the attack, including any successful data extractions from the firewalls.

ON2IT - What the SOC did

Upon proactively applying all security recommended on April 12th, our mSOC¹⁰ identified the details of the attack and immediately started investigating. Similar to attack A, the mSOC¹⁰ detected the malicious cron job and executed a script to detect any exploit attempts on devices. The mSOC¹⁰ executed this script on all managed customer systems upon the availability of new signatures. Our Network root engineer to secure forensic artifacts on devices, and evaluate the extent of the attack, including any successful data extractions from the firewalls.

ON2IT - What the SOC did

Upon proactively applying all security recommended on April 12th, our mSOC¹⁰ identified the details of the attack and immediately started investigating. Similar to attack A, the mSOC¹⁰ detected the malicious cron job and executed a script to detect any exploit attempts on devices. The mSOC¹⁰ executed this script on all managed customer systems upon the availability of new signatures. Our Network root engineer to secure forensic artifacts on devices, and evaluate the extent of the attack, including any successful data extractions from the firewalls.

ON2IT - What the SOC did

Upon proactively applying all security recommended on April 12th, our mSOC¹⁰ identified the details of the attack and immediately started investigating. Similar to attack A, the mSOC¹⁰ detected the malicious cron job and executed a script to detect any exploit attempts on devices. The mSOC¹⁰ executed this script on all managed customer systems upon the availability of new signatures. Our Network root engineer to secure forensic artifacts on devices, and evaluate the extent of the attack, including any successful data extractions from the firewalls.

ON2IT - What the SOC did

Upon proactively applying all security recommended on April 12th, our mSOC¹⁰ identified the details of the attack and immediately started investigating. Similar to attack A, the mSOC¹⁰ detected the malicious cron job and executed a script to detect any exploit attempts on devices. The mSOC¹⁰ executed this script on all managed customer systems upon the availability of new signatures. Our Network root engineer to secure forensic artifacts on devices, and evaluate the extent of the attack, including any successful data extractions from the firewalls.

ON2IT - What the SOC did

Upon proactively applying all security recommended on April 12th, our mSOC¹⁰ identified the details of the attack and immediately started investigating. Similar to attack A, the mSOC¹⁰ detected the malicious cron job and executed a script to detect any exploit attempts on devices. The mSOC¹⁰ executed this script on all managed customer systems upon the availability of new signatures. Our Network root engineer to secure forensic artifacts on devices, and evaluate the extent of the attack, including any successful data extractions from the firewalls.

ON2IT - What the SOC did

Upon proactively applying all security recommended on April 12th, our mSOC¹⁰ identified the details of the attack and immediately started investigating. Similar to attack A, the mSOC¹⁰ detected the malicious cron job and executed a script to detect any exploit attempts on devices. The mSOC¹⁰ executed this script on all managed customer systems upon the availability of new signatures. Our Network root engineer to secure forensic artifacts on devices, and evaluate the extent of the attack, including any successful data extractions from the firewalls.

ON2IT - What the SOC did

Upon proactively applying all security recommended on April 12th, our mSOC¹⁰ identified the details of the attack and immediately started investigating. Similar to attack A, the mSOC¹⁰ detected the malicious cron job and executed a script to detect any exploit attempts on devices. The mSOC¹⁰ executed this script on all managed customer systems upon the availability of new signatures. Our Network root engineer to secure forensic artifacts on devices, and evaluate the extent of the attack, including any successful data extractions from the firewalls.

ON2IT - What the SOC did

Upon proactively applying all security recommended on April 12th, our mSOC¹⁰ identified the details of the attack and immediately started investigating. Similar to attack A, the mSOC¹⁰ detected the malicious cron job and executed a script to detect any exploit attempts on devices. The mSOC¹⁰ executed this script on all managed customer systems upon the availability of new signatures. Our Network root engineer to secure forensic artifacts on devices, and evaluate the extent of the attack, including any successful data extractions from the firewalls.

ON2IT - What the SOC did

Upon proactively applying all security recommended on April 12th, our mSOC¹⁰ identified the details of the attack and immediately started investigating. Similar to attack A, the mSOC¹⁰ detected the malicious cron job and executed a script to detect any exploit attempts on devices. The mSOC¹⁰ executed this script on all managed customer systems upon the availability of new signatures. Our Network root engineer to secure forensic artifacts on devices, and evaluate the extent of the attack, including any successful data extractions from the firewalls.

ON2IT - What the SOC did

Upon proactively applying all security recommended on April 12th, our mSOC¹⁰ identified the details of the attack and immediately started investigating. Similar to attack A, the mSOC¹⁰ detected the malicious cron job and executed a script to detect any exploit attempts on devices. The mSOC¹⁰ executed this script on all managed customer systems upon the availability of new signatures. Our Network root engineer to secure forensic artifacts on devices, and evaluate the extent of the attack, including any successful data extractions from the firewalls.

ON2IT - What the SOC did

Upon proactively applying all security recommended on April 12th, our mSOC¹⁰ identified the details of the attack and immediately started investigating. Similar to attack A, the mSOC¹⁰ detected the malicious cron job and executed a script to detect any exploit attempts on devices. The mSOC¹⁰ executed this script on all managed customer systems upon the availability of new signatures. Our Network root engineer to secure forensic artifacts on devices, and evaluate the extent of the attack, including any successful data extractions from the firewalls.

ON2IT - What the SOC did

Upon proactively applying all security recommended on April 12th, our mSOC¹⁰ identified the details of the attack and immediately started investigating. Similar to attack A, the mSOC¹⁰ detected the malicious cron job and executed a script to detect any exploit attempts on devices. The mSOC¹⁰ executed this script on all managed customer systems upon the availability of new signatures. Our Network root engineer to secure forensic artifacts on devices, and evaluate the extent of the attack, including any successful data extractions from the firewalls.

ON2IT - What the SOC did

Upon proactively applying all security recommended on April 12th, our mSOC¹⁰ identified the details of the attack and immediately started investigating. Similar to attack A, the mSOC¹⁰ detected the malicious cron job and executed a script to detect any exploit attempts on devices. The mSOC¹⁰ executed this script on all managed customer systems upon the availability of new signatures. Our Network root engineer to secure forensic artifacts on devices, and evaluate the extent of the attack, including any successful data extractions from the firewalls.

ON2IT - What the SOC did

Upon proactively applying all security recommended on April 12th, our mSOC¹⁰ identified the details of the attack and immediately started investigating. Similar to attack A, the mSOC¹⁰ detected the malicious cron job and executed a script to detect any exploit attempts on devices. The mSOC¹⁰ executed this script on all managed customer systems upon the availability of new signatures. Our Network root engineer to secure forensic artifacts on devices, and evaluate the extent of the attack, including any successful data extractions from the firewalls.

ON2IT - What the SOC did

Upon proactively applying all security recommended on April 12th, our mSOC¹⁰ identified the details of the attack and immediately started investigating. Similar to attack A, the mSOC¹⁰ detected the malicious cron job and executed a script to detect any exploit attempts on devices. The mSOC¹⁰ executed this script on all managed customer systems upon the availability of new signatures. Our Network root engineer to secure forensic artifacts on devices, and evaluate the extent of the attack, including any successful data extractions from the firewalls.

ON2IT - What the SOC did

Upon proactively applying all security recommended on April 12th, our mSOC¹⁰ identified the details of the attack and immediately started investigating. Similar to attack A, the mSOC¹⁰ detected the malicious cron job and executed a script to detect any exploit attempts on devices. The mSOC¹⁰ executed this script on all managed customer systems upon the availability of new signatures. Our Network root engineer to secure forensic artifacts on devices, and evaluate the extent of the attack, including any successful data extractions from the firewalls.

ON2IT - What the SOC did

Upon proactively applying all security recommended on April 12th, our mSOC¹⁰ identified the details of the attack and immediately started investigating. Similar to attack A, the mSOC¹⁰ detected the malicious cron job and executed a script to detect any exploit attempts on devices. The mSOC¹⁰ executed this script on all managed customer systems upon the availability of new signatures. Our Network root engineer to secure forensic artifacts on devices, and evaluate the extent of the attack, including any successful data extractions from the firewalls.

ON2IT - What the SOC did

Upon proactively applying all security recommended on April 12th, our mSOC¹⁰ identified the details of the attack and immediately started investigating. Similar to attack A, the mSOC¹⁰ detected the malicious cron job and executed a script to detect any exploit attempts on devices. The mSOC¹⁰ executed this script on all managed customer systems upon the availability of new signatures. Our Network root engineer to secure forensic artifacts on devices, and evaluate the extent of the attack, including any successful data extractions from the firewalls.

ON2IT - What the SOC did

Upon proactively applying all security recommended on April 12th, our mSOC¹⁰ identified the details of the attack and immediately started investigating. Similar to attack A, the mSOC¹⁰ detected the malicious cron job and executed a script to detect any exploit attempts on devices. The mSOC¹⁰ executed this script on all managed customer systems upon the availability of new signatures. Our Network root engineer to secure forensic artifacts on devices, and evaluate the extent of the attack, including any successful data extractions from the firewalls.

ON2IT - What the SOC did