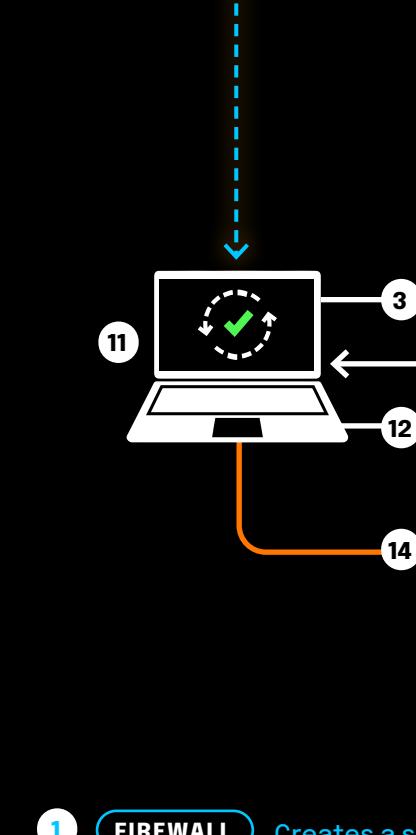
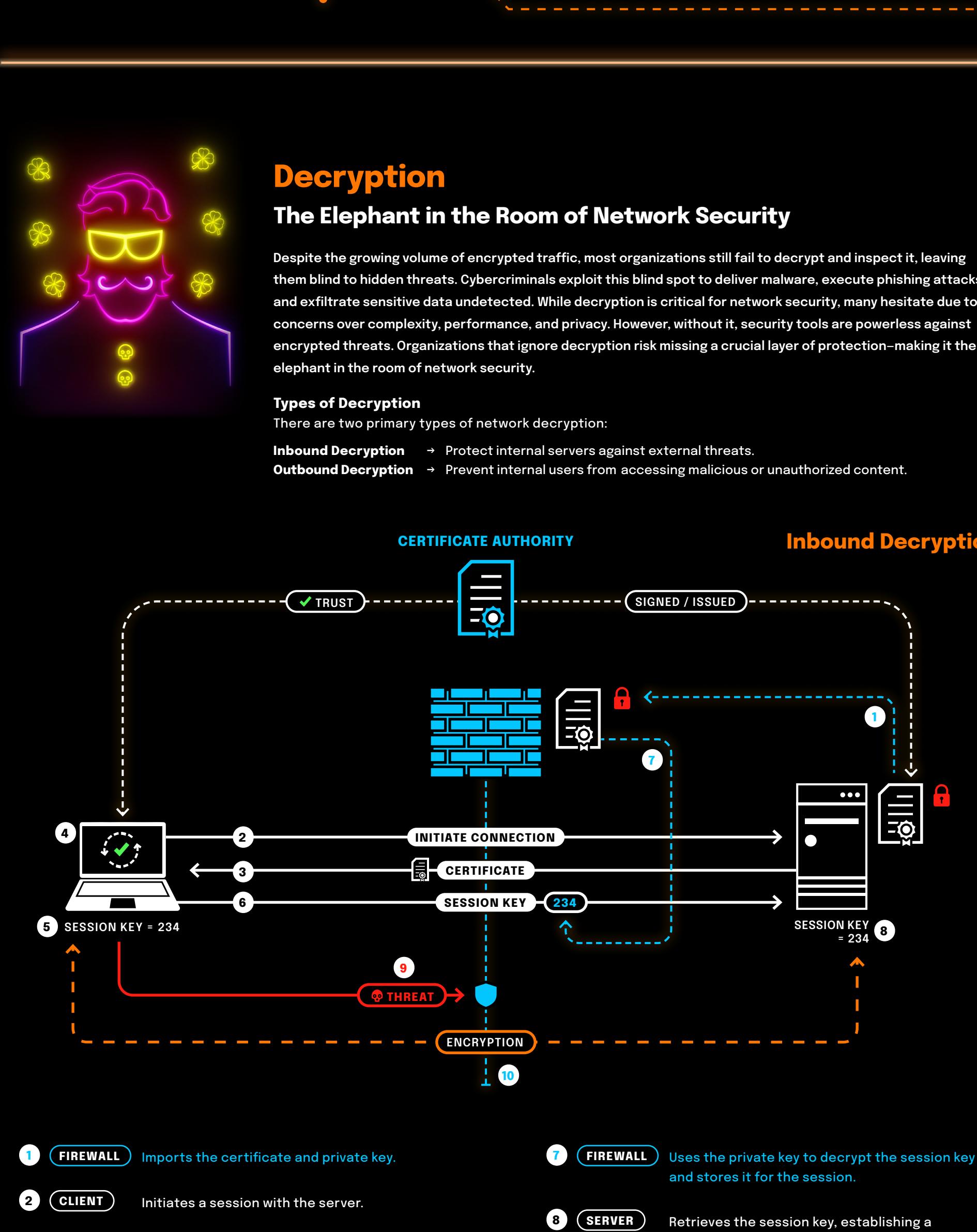


Threat Talks

Encryption

The Hidden Dangers of Encrypted Traffic



Encrypted traffic used to be considered the safest way to browse the internet and conduct business online. The idea was simple: if data is encrypted, it's protected from prying eyes.

However, encryption is now a double-edged sword. Cybercriminals have learned to weaponize it, using it to evade detection, conceal malicious activity, and bypass security measures. Today, the very technology meant to safeguard information is being exploited to facilitate ransomware attacks, data breaches, and command-and-control operations.

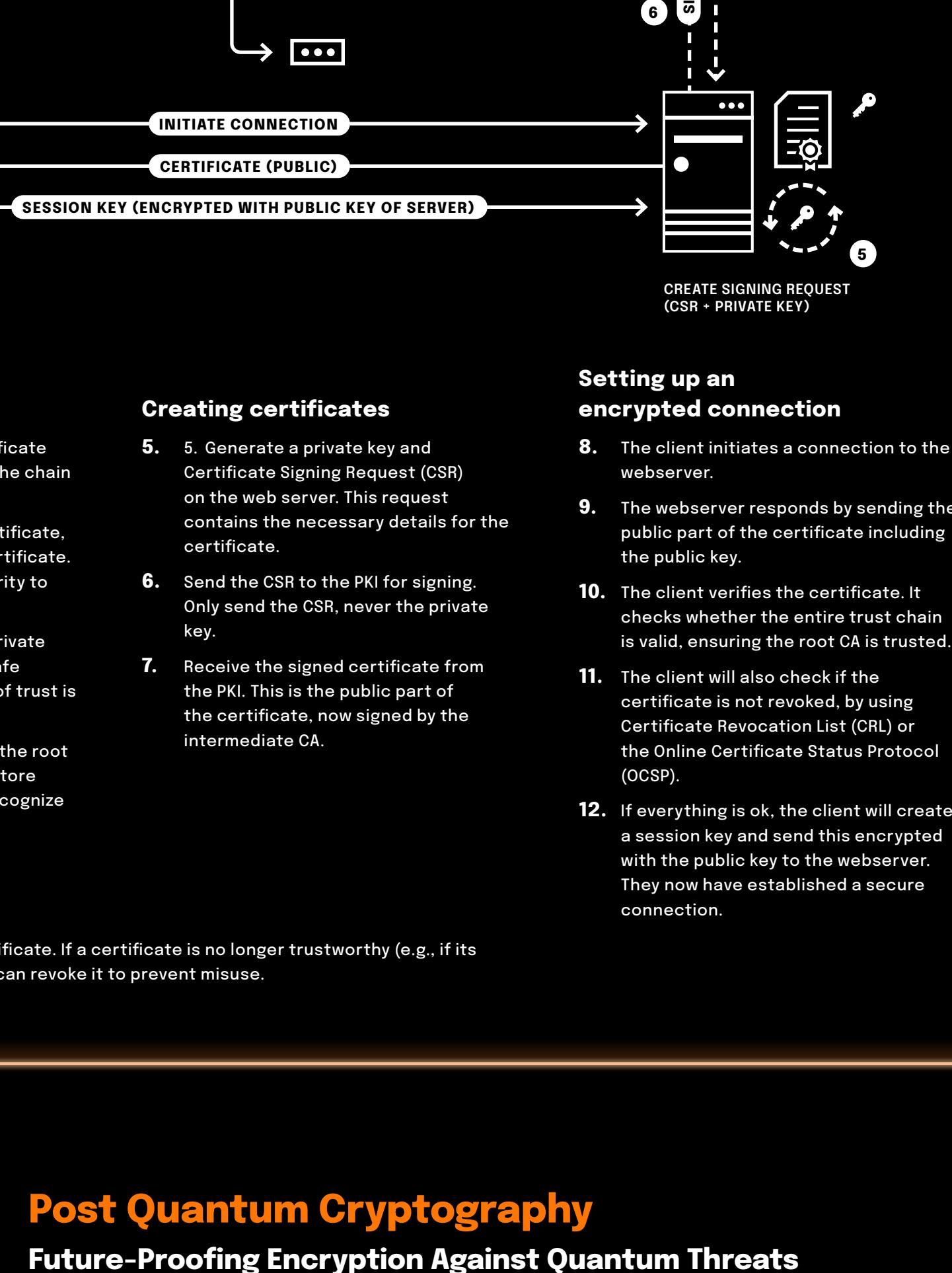
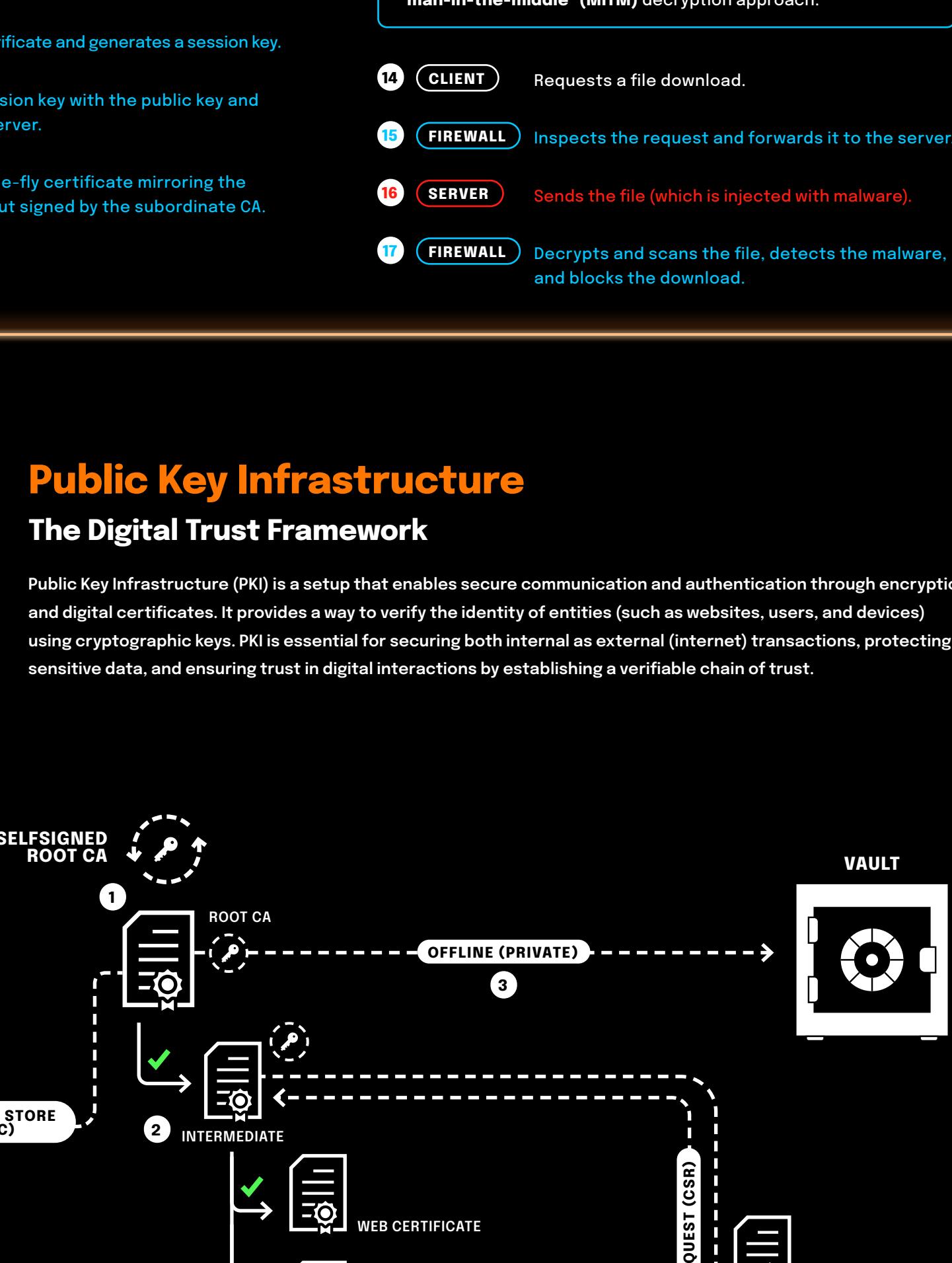
With cyberthreats now lurking within encrypted channels, how do we protect ourselves?

In this Threat Talks infographic we will discuss the following threats:

- Decryption
- Public Key Infrastructure
- Post Quantum Cryptography

Decryption

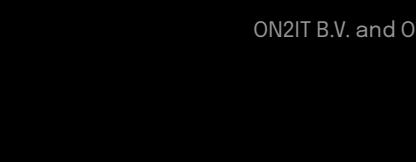
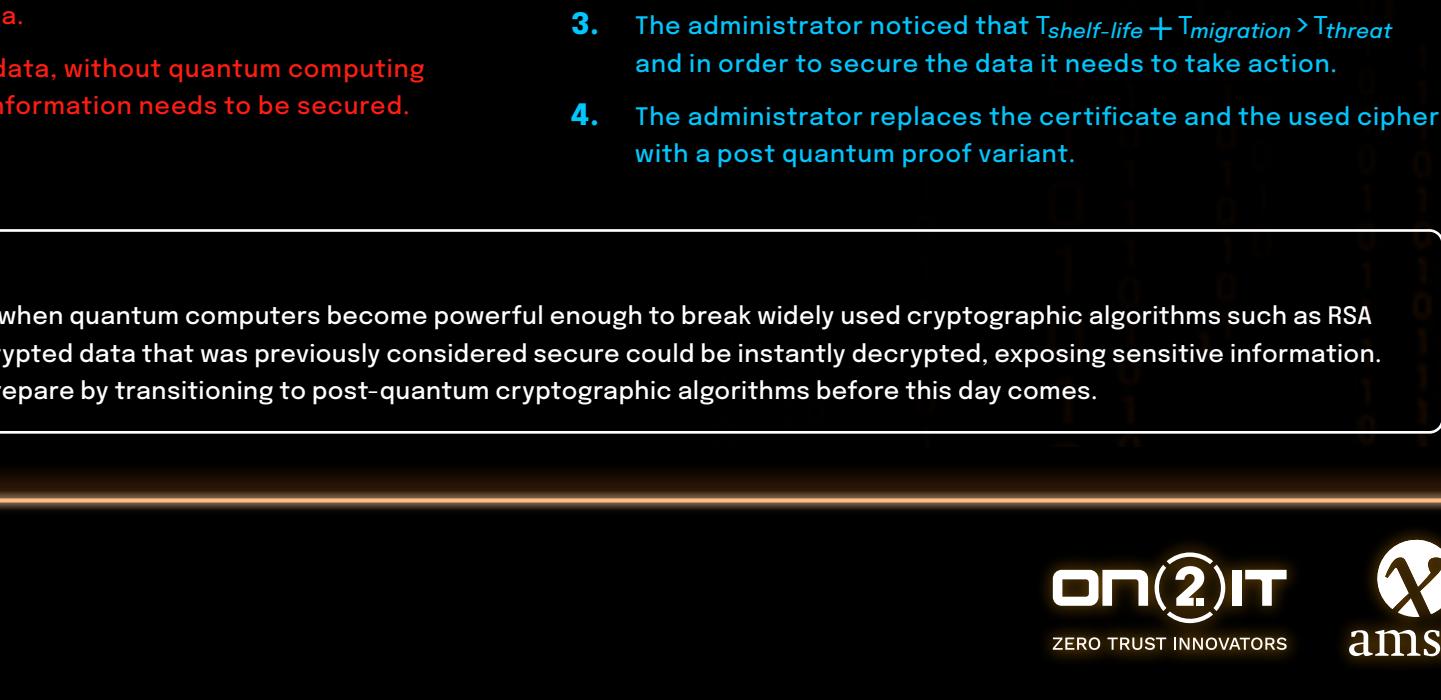
The Elephant in the Room of Network Security



Despite the growing volume of encrypted traffic, most organizations still fail to decrypt and inspect it, leaving them blind to hidden threats. Cybercriminals exploit this blind spot to deliver malware, execute phishing attacks, and exfiltrate sensitive data undetected. While decryption is critical for network security, many hesitate due to concerns over complexity, performance, and privacy. However, without it, security tools are powerless against encrypted threats. Organizations that ignore decryption risk missing a crucial layer of protection—making it the elephant in the room of network security.

Types of Decryption

There are two primary types of network decryption:

Inbound Decryption → Protect internal servers against external threats.



Outbound Decryption → Prevent internal users from accessing malicious or unauthorized content.

Public Key Infrastructure

The Digital Trust Framework

Public Key Infrastructure (PKI) is a setup that enables secure communication and authentication through encryption and digital certificates. It provides a way to verify the identity of entities (such as websites, users, and devices) using digital certificates. PKI is essential for securing data in transit, protecting sensitive data, and ensuring trust in digital interactions by establishing a verifiable chain of trust.

ON2IT B.V. and ON2IT Inc. © Any unauthorized use of this work may constitute a violation of national and international copyright laws.

Q-Day is the anticipated moment when quantum computers become powerful enough to break widely used cryptographic algorithms such as RSA and ECC. Once Q-Day arrives, encrypted data that was previously considered secure could be instantly decrypted, exposing sensitive information.

Organizations must proactively prepare by transitioning to post-quantum cryptographic algorithms before this day comes.

With the rapid advancement of quantum computing, traditional encryption methods based on RSA and ECC will eventually become vulnerable to quantum attacks. Using Michele Mosca's inequality, which compares the time it takes to break a quantum algorithm to the time it takes to break a classical algorithm, it means an adversary could break your encryption before you have to replace it.

If that's the case, it's critical to act now to safeguard sensitive data.

With the rapid advancement of quantum computing, traditional encryption methods based on RSA and ECC will eventually become vulnerable to quantum attacks. Using Michele Mosca's inequality, which compares the time it takes to break a quantum algorithm to the time it takes to break a classical algorithm, it means an adversary could break your encryption before you have to replace it.

If that's the case, it's critical to act now to safeguard sensitive data.

With the rapid advancement of quantum computing, traditional encryption methods based on RSA and ECC will eventually become vulnerable to quantum attacks. Using Michele Mosca's inequality, which compares the time it takes to break a quantum algorithm to the time it takes to break a classical algorithm, it means an adversary could break your encryption before you have to replace it.

If that's the case, it's critical to act now to safeguard sensitive data.

With the rapid advancement of quantum computing, traditional encryption methods based on RSA and ECC will eventually become vulnerable to quantum attacks. Using Michele Mosca's inequality, which compares the time it takes to break a quantum algorithm to the time it takes to break a classical algorithm, it means an adversary could break your encryption before you have to replace it.

If that's the case, it's critical to act now to safeguard sensitive data.

With the rapid advancement of quantum computing, traditional encryption methods based on RSA and ECC will eventually become vulnerable to quantum attacks. Using Michele Mosca's inequality, which compares the time it takes to break a quantum algorithm to the time it takes to break a classical algorithm, it means an adversary could break your encryption before you have to replace it.

If that's the case, it's critical to act now to safeguard sensitive data.

With the rapid advancement of quantum computing, traditional encryption methods based on RSA and ECC will eventually become vulnerable to quantum attacks. Using Michele Mosca's inequality, which compares the time it takes to break a quantum algorithm to the time it takes to break a classical algorithm, it means an adversary could break your encryption before you have to replace it.

If that's the case, it's critical to act now to safeguard sensitive data.

With the rapid advancement of quantum computing, traditional encryption methods based on RSA and ECC will eventually become vulnerable to quantum attacks. Using Michele Mosca's inequality, which compares the time it takes to break a quantum algorithm to the time it takes to break a classical algorithm, it means an adversary could break your encryption before you have to replace it.

If that's the case, it's critical to act now to safeguard sensitive data.

With the rapid advancement of quantum computing, traditional encryption methods based on RSA and ECC will eventually become vulnerable to quantum attacks. Using Michele Mosca's inequality, which compares the time it takes to break a quantum algorithm to the time it takes to break a classical algorithm, it means an adversary could break your encryption before you have to replace it.

If that's the case, it's critical to act now to safeguard sensitive data.

With the rapid advancement of quantum computing, traditional encryption methods based on RSA and ECC will eventually become vulnerable to quantum attacks. Using Michele Mosca's inequality, which compares the time it takes to break a quantum algorithm to the time it takes to break a classical algorithm, it means an adversary could break your encryption before you have to replace it.

If that's the case, it's critical to act now to safeguard sensitive data.

With the rapid advancement of quantum computing, traditional encryption methods based on RSA and ECC will eventually become vulnerable to quantum attacks. Using Michele Mosca's inequality, which compares the time it takes to break a quantum algorithm to the time it takes to break a classical algorithm, it means an adversary could break your encryption before you have to replace it.

If that's the case, it's critical to act now to safeguard sensitive data.

With the rapid advancement of quantum computing, traditional encryption methods based on RSA and ECC will eventually become vulnerable to quantum attacks. Using Michele Mosca's inequality, which compares the time it takes to break a quantum algorithm to the time it takes to break a classical algorithm, it means an adversary could break your encryption before you have to replace it.

If that's the case, it's critical to act now to safeguard sensitive data.

With the rapid advancement of quantum computing, traditional encryption methods based on RSA and ECC will eventually become vulnerable to quantum attacks. Using Michele Mosca's inequality, which compares the time it takes to break a quantum algorithm to the time it takes to break a classical algorithm, it means an adversary could break your encryption before you have to replace it.

If that's the case, it's critical to act now to safeguard sensitive data.

With the rapid advancement of quantum computing, traditional encryption methods based on RSA and ECC will eventually become vulnerable to quantum attacks. Using Michele Mosca's inequality, which compares the time it takes to break a quantum algorithm to the time it takes to break a classical algorithm, it means an adversary could break your encryption before you have to replace it.

If that's the case, it's critical to act now to safeguard sensitive data.

With the rapid advancement of quantum computing, traditional encryption methods based on RSA and ECC will eventually become vulnerable to quantum attacks. Using Michele Mosca's inequality, which compares the time it takes to break a quantum algorithm to the time it takes to break a classical algorithm, it means an adversary could break your encryption before you have to replace it.

If that's the case, it's critical to act now to safeguard sensitive data.

With the rapid advancement of quantum computing, traditional encryption methods based on RSA and ECC will eventually become vulnerable to quantum attacks. Using Michele Mosca's inequality, which compares the time it takes to break a quantum algorithm to the time it takes to break a classical algorithm, it means an adversary could break your encryption before you have to replace it.

If that's the case, it's critical to act now to safeguard sensitive data.

With the rapid advancement of quantum computing, traditional encryption methods based on RSA and ECC will eventually become vulnerable to quantum attacks. Using Michele Mosca's inequality, which compares the time it takes to break a quantum algorithm to the time it takes to break a classical algorithm, it means an adversary could break your encryption before you have to replace it.

If that's the case, it's critical to act now to safeguard sensitive data.

With the rapid advancement of quantum computing, traditional encryption methods based on RSA and ECC will eventually become vulnerable to quantum attacks. Using Michele Mosca's inequality, which compares the time it takes to break a quantum algorithm to the time it takes to break a classical algorithm, it means an adversary could break your encryption before you have to replace it.

If that's the case, it's critical to act now to safeguard sensitive data.

With the rapid advancement of quantum computing, traditional encryption methods based on RSA and ECC will eventually become vulnerable to quantum attacks. Using Michele Mosca's inequality, which compares the time it takes to break a quantum algorithm to the time it takes to break a classical algorithm, it means an adversary could break your encryption before you have to replace it.

If that's the case, it's critical to act now to safeguard sensitive data.

With the rapid advancement of quantum computing, traditional encryption methods based on RSA and ECC will eventually become vulnerable to quantum attacks. Using Michele Mosca's inequality, which compares the time it takes to break a quantum algorithm to the time it takes to break a classical algorithm, it means an adversary could break your encryption before you have to replace it.

If that's the case, it's critical to act now to safeguard sensitive data.

With the rapid advancement of quantum computing, traditional encryption methods based on RSA and ECC will eventually become vulnerable to quantum attacks. Using Michele Mosca's inequality, which compares the time it takes to break a quantum algorithm to the time it takes to break a classical algorithm, it means an adversary could break your encryption before you have to replace it.

If that's the case, it's critical to act now to safeguard sensitive data.

With the rapid advancement of quantum computing, traditional encryption methods based on RSA and ECC will eventually become vulnerable to quantum attacks. Using Michele Mosca's inequality, which compares the time it takes to break a quantum algorithm to the time it takes to break a classical algorithm, it means an adversary could break your encryption before you have to replace it.

If that's the case, it's critical to act now to safeguard sensitive data.

With the rapid advancement of quantum computing, traditional encryption methods based on RSA and ECC will eventually become vulnerable to quantum attacks. Using Michele Mosca's inequality, which compares the time it takes to break a quantum algorithm to the time it takes to break a classical algorithm, it means an adversary could break your encryption before you have to replace it.

If that's the case, it's critical to act now to safeguard sensitive data.

With the rapid advancement of quantum computing, traditional encryption methods based on RSA and ECC will eventually become vulnerable to quantum attacks. Using Michele Mosca's inequality, which compares the time it takes to break a quantum algorithm to the time it takes to break a classical algorithm, it means an adversary could break your encryption before you have to replace it.

If that's the case, it's critical to act now to safeguard sensitive data.

With the rapid advancement of quantum computing, traditional encryption methods based on RSA and ECC will eventually become vulnerable to quantum attacks. Using Michele Mosca's inequality, which compares the time it takes to break a quantum algorithm to the time it takes to break a classical algorithm, it means an adversary could break your encryption before you have to replace it.

If that's the case, it's critical to act now to safeguard sensitive data.

With the rapid advancement of quantum computing, traditional encryption methods based on RSA and ECC will eventually become vulnerable to quantum attacks. Using Michele Mosca's inequality, which compares the time it takes to break a quantum algorithm to the time it takes to break a classical algorithm, it means an adversary could break your encryption before you have to replace it.

If that's the case, it's critical to act now to safeguard sensitive data.

With the rapid advancement of quantum computing, traditional encryption methods based on RSA and ECC will eventually become vulnerable to quantum attacks. Using Michele Mosca's inequality, which compares the time it takes to break a quantum algorithm to the time it takes to break a classical algorithm, it means an adversary could break your encryption before you have to replace it.

If that's the case, it's critical to act now to safeguard sensitive data.

With the rapid advancement of quantum computing, traditional encryption methods based on RSA and ECC will eventually become vulnerable to quantum attacks. Using Michele Mosca's inequality, which compares the time it takes to break a quantum algorithm to the time it takes to break a classical algorithm, it means an adversary could break your encryption before you have to replace it.

If that's the case, it's critical to act now to safeguard sensitive data.

With the rapid advancement of quantum computing, traditional encryption methods based on RSA and ECC will eventually become vulnerable to quantum attacks. Using Michele Mosca's inequality, which compares the time it takes to break a quantum algorithm to the time it takes to break a classical algorithm, it means an adversary could break your encryption before you have to replace it.

If that's the case, it's critical to act now to safeguard sensitive data.

With the rapid advancement of quantum computing, traditional encryption methods based on RSA and ECC will eventually become vulnerable to quantum attacks. Using Michele Mosca's inequality, which compares the time it takes to break a quantum algorithm to the time it takes to break a classical algorithm, it means an adversary could break your encryption before you have to replace it.

If that's the case, it's critical to act now to safeguard sensitive data.

With the rapid advancement of quantum computing, traditional encryption methods based on RSA and ECC will eventually become vulnerable to quantum attacks. Using Michele Mosca's inequality, which compares the time it takes to break a quantum algorithm to the time it takes to break a classical algorithm, it means an adversary could break your encryption before you have to replace it.

If that's the case, it's critical to act now to safeguard sensitive data.

With the rapid advancement of quantum computing, traditional encryption methods based on RSA and ECC will eventually become vulnerable to quantum attacks. Using Michele Mosca's inequality, which compares the time it takes to break a quantum algorithm to the time it takes to break a classical algorithm, it means an adversary could break your encryption before you have to replace it.

If that's the case, it's critical to act now to safeguard sensitive data.

With the rapid advancement of quantum computing, traditional encryption methods based on RSA and ECC will eventually become vulnerable to quantum attacks. Using Michele Mosca's inequality, which compares the time it takes to break a quantum algorithm to the time it takes to break a classical algorithm, it means an adversary could break your encryption before you have to replace it.

If that's the case, it's critical to act now to safeguard sensitive data.

</